Difference between revisions of "RFC8782"

From RFC-Wiki
(Created page with " Internet Engineering Task Force (IETF) T. Reddy.K, Ed. Request for Comments: 8782 McAfee Category: Standards Tr...")
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 

 

 
 
  
 
Internet Engineering Task Force (IETF)                  T. Reddy.K, Ed.
 
Internet Engineering Task Force (IETF)                  T. Reddy.K, Ed.
Line 7: Line 5:
 
Category: Standards Track                              M. Boucadair, Ed.
 
Category: Standards Track                              M. Boucadair, Ed.
 
ISSN: 2070-1721                                                  Orange
 
ISSN: 2070-1721                                                  Orange
                                                                P. Patil
+
                                                            P. Patil
                                                                  Cisco
+
                                                                Cisco
                                                            A. Mortensen
+
                                                        A. Mortensen
                                                    Arbor Networks, Inc.
+
                                                Arbor Networks, Inc.
                                                              N. Teague
+
                                                            N. Teague
                                              Iron Mountain Data Centers
+
                                          Iron Mountain Data Centers
                                                                May 2020
+
                                                            May 2020
  
 +
Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal
 +
                      Channel Specification
  
  Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal
+
'''Abstract'''
                        Channel Specification
 
  
Abstract
+
This document specifies the Distributed Denial-of-Service Open Threat
 +
Signaling (DOTS) signal channel, a protocol for signaling the need
 +
for protection against Distributed Denial-of-Service (DDoS) attacks
 +
to a server capable of enabling network traffic mitigation on behalf
 +
of the requesting client.
  
  This document specifies the Distributed Denial-of-Service Open Threat
+
A companion document defines the DOTS data channel, a separate
  Signaling (DOTS) signal channel, a protocol for signaling the need
+
reliable communication layer for DOTS management and configuration
  for protection against Distributed Denial-of-Service (DDoS) attacks
+
purposes.
  to a server capable of enabling network traffic mitigation on behalf
 
  of the requesting client.
 
  
  A companion document defines the DOTS data channel, a separate
+
'''Status of This Memo'''
  reliable communication layer for DOTS management and configuration
 
  purposes.
 
  
Status of This Memo
+
This is an Internet Standards Track document.
  
  This is an Internet Standards Track document.
+
This document is a product of the Internet Engineering Task Force
 +
(IETF).  It represents the consensus of the IETF community.  It has
 +
received public review and has been approved for publication by the
 +
Internet Engineering Steering Group (IESG).  Further information on
 +
Internet Standards is available in Section 2 of [[RFC7841|RFC 7841]].
  
  This document is a product of the Internet Engineering Task Force
+
Information about the current status of this document, any errata,
  (IETF).  It represents the consensus of the IETF community.  It has
+
and how to provide feedback on it may be obtained at
  received public review and has been approved for publication by the
+
https://www.rfc-editor.org/info/rfc8782.
  Internet Engineering Steering Group (IESG). Further information on
 
  Internet Standards is available in Section 2 of RFC 7841.
 
  
  Information about the current status of this document, any errata,
+
'''Copyright Notice'''
  and how to provide feedback on it may be obtained at
 
  https://www.rfc-editor.org/info/rfc8782.
 
  
Copyright Notice
+
Copyright (c) 2020 IETF Trust and the persons identified as the
 +
document authors.  All rights reserved.
  
  Copyright (c) 2020 IETF Trust and the persons identified as the
+
This document is subject to [[BCP78|BCP 78]] and the IETF Trust's Legal
  document authorsAll rights reserved.
+
Provisions Relating to IETF Documents
 +
(https://trustee.ietf.org/license-info) in effect on the date of
 +
publication of this document.  Please review these documents
 +
carefully, as they describe your rights and restrictions with respect
 +
to this document.  Code Components extracted from this document must
 +
include Simplified BSD License text as described in Section 4.e of
 +
the Trust Legal Provisions and are provided without warranty as
 +
described in the Simplified BSD License.
  
  This document is subject to BCP 78 and the IETF Trust's Legal
+
1.  Introduction
  Provisions Relating to IETF Documents
+
2.  Terminology
  (https://trustee.ietf.org/license-info) in effect on the date of
+
3.  Design Overview
  publication of this documentPlease review these documents
+
4.  DOTS Signal Channel: Messages & Behaviors
  carefully, as they describe your rights and restrictions with respect
+
  4.1.  DOTS Server(s) Discovery
  to this documentCode Components extracted from this document must
+
  4.2.  CoAP URIs
  include Simplified BSD License text as described in Section 4.e of
+
  4.3.  Happy Eyeballs for DOTS Signal Channel
  the Trust Legal Provisions and are provided without warranty as
+
  4.4.  DOTS Mitigation Methods
  described in the Simplified BSD License.
+
    4.4.1.  Request Mitigation
 +
    4.4.2.  Retrieve Information Related to a Mitigation
 +
      4.4.2.1.  DOTS Servers Sending Mitigation Status
 +
      4.4.2.2.  DOTS Clients Polling for Mitigation Status
 +
    4.4.3.  Efficacy Update from DOTS Clients
 +
    4.4.4.  Withdraw a Mitigation
 +
  4.5.  DOTS Signal Channel Session Configuration
 +
    4.5.1.  Discover Configuration Parameters
 +
    4.5.2.  Convey DOTS Signal Channel Session Configuration
 +
    4.5.3.  Configuration Freshness and Notifications
 +
    4.5.4.  Delete DOTS Signal Channel Session Configuration
 +
  4.6.  Redirected Signaling
 +
  4.7.  Heartbeat Mechanism
 +
5.  DOTS Signal Channel YANG Modules
 +
  5.1.  Tree Structure
 +
  5.2.  IANA DOTS Signal Channel YANG Module
 +
  5.3.  IETF DOTS Signal Channel YANG Module
 +
6.  YANG/JSON Mapping Parameters to CBOR
 +
7.  (D)TLS Protocol Profile and Performance Considerations
 +
  7.1.  (D)TLS Protocol Profile
 +
  7.2. (D)TLS 1.3 Considerations
 +
  7.3.  DTLS MTU and Fragmentation
 +
8.  Mutual Authentication of DOTS Agents & Authorization of DOTS
 +
        Clients
 +
9IANA Considerations
 +
  9.1.  DOTS Signal Channel UDP and TCP Port Number
 +
  9.2.  Well-Known 'dots' URI
 +
  9.3.  Media Type Registration
 +
  9.4.  CoAP Content-Formats Registration
 +
  9.5.  CBOR Tag Registration
 +
  9.6.  DOTS Signal Channel Protocol Registry
 +
    9.6.1.  DOTS Signal Channel CBOR Key Values Subregistry
 +
      9.6.1.1.  Registration Template
 +
      9.6.1.2.  Initial Subregistry Content
 +
    9.6.2.  Status Codes Subregistry
 +
    9.6.3Conflict Status Codes Subregistry
 +
    9.6.4. Conflict Cause Codes Subregistry
 +
    9.6.5.  Attack Status Codes Subregistry
 +
  9.7.  DOTS Signal Channel YANG Modules
 +
10. Security Considerations
 +
11. References
 +
  11.1.  Normative References
 +
  11.2.  Informative References
 +
Appendix A. CUID Generation
 +
Acknowledgements
 +
Contributors
 +
Authors' Addresses
  
Table of Contents
+
== Introduction ==
  
  1.  Introduction
+
A Distributed Denial-of-Service (DDoS) attack is a distributed
  2.  Terminology
+
attempt to make machines or network resources unavailable to their
  3.  Design Overview
+
intended usersIn most cases, sufficient scale for an effective
  4.  DOTS Signal Channel: Messages & Behaviors
+
attack can be achieved by compromising enough end hosts and using
    4.1.  DOTS Server(s) Discovery
+
those infected hosts to perpetrate and amplify the attackThe
    4.2.  CoAP URIs
+
victim in this attack can be an application server, a host, a router,
    4.3.  Happy Eyeballs for DOTS Signal Channel
+
a firewall, or an entire network.
    4.4.  DOTS Mitigation Methods
 
      4.4.1.  Request Mitigation
 
      4.4.2.  Retrieve Information Related to a Mitigation
 
        4.4.2.1.  DOTS Servers Sending Mitigation Status
 
        4.4.2.2DOTS Clients Polling for Mitigation Status
 
      4.4.3.  Efficacy Update from DOTS Clients
 
      4.4.4.  Withdraw a Mitigation
 
    4.5.  DOTS Signal Channel Session Configuration
 
      4.5.1.  Discover Configuration Parameters
 
      4.5.2.  Convey DOTS Signal Channel Session Configuration
 
      4.5.3.  Configuration Freshness and Notifications
 
      4.5.4.  Delete DOTS Signal Channel Session Configuration
 
    4.6.  Redirected Signaling
 
    4.7.  Heartbeat Mechanism
 
  5.  DOTS Signal Channel YANG Modules
 
    5.1.  Tree Structure
 
    5.2.  IANA DOTS Signal Channel YANG Module
 
    5.3.  IETF DOTS Signal Channel YANG Module
 
  6.  YANG/JSON Mapping Parameters to CBOR
 
  7.  (D)TLS Protocol Profile and Performance Considerations
 
    7.1(D)TLS Protocol Profile
 
    7.2.  (D)TLS 1.3 Considerations
 
    7.3.  DTLS MTU and Fragmentation
 
  8.  Mutual Authentication of DOTS Agents & Authorization of DOTS
 
          Clients
 
  9.  IANA Considerations
 
    9.1.  DOTS Signal Channel UDP and TCP Port Number
 
    9.2.  Well-Known 'dots' URI
 
    9.3.  Media Type Registration
 
    9.4.  CoAP Content-Formats Registration
 
    9.5.  CBOR Tag Registration
 
    9.6.  DOTS Signal Channel Protocol Registry
 
      9.6.1.  DOTS Signal Channel CBOR Key Values Subregistry
 
        9.6.1.1. Registration Template
 
        9.6.1.2.  Initial Subregistry Content
 
      9.6.2.  Status Codes Subregistry
 
      9.6.3.  Conflict Status Codes Subregistry
 
      9.6.4.  Conflict Cause Codes Subregistry
 
      9.6.5.  Attack Status Codes Subregistry
 
    9.7.  DOTS Signal Channel YANG Modules
 
  10. Security Considerations
 
  11. References
 
    11.1.  Normative References
 
    11.2.  Informative References
 
  Appendix A.  CUID Generation
 
  Acknowledgements
 
  Contributors
 
  Authors' Addresses
 
  
1Introduction
+
Network applications have finite resources like CPU cycles, the
 +
number of processes or threads they can create and use, the maximum
 +
number of simultaneous connections they can handle, the resources
 +
assigned to the control plane, etcWhen processing network traffic,
 +
such applications are supposed to use these resources to provide the
 +
intended functionality in the most efficient manner.  However, a DDoS
 +
attacker may be able to prevent an application from performing its
 +
intended task by making the application exhaust its finite resources.
  
  A Distributed Denial-of-Service (DDoS) attack is a distributed
+
A TCP DDoS SYN flood [[RFC4987]], for example, is a memory-exhausting
  attempt to make machines or network resources unavailable to their
+
attack while an ACK flood is a CPU-exhausting attack.  Attacks on the
  intended users.  In most cases, sufficient scale for an effective
+
link are carried out by sending enough traffic so that the link
  attack can be achieved by compromising enough end hosts and using
+
becomes congested, thereby likely causing packet loss for legitimate
  those infected hosts to perpetrate and amplify the attack.  The
+
traffic.  Stateful firewalls can also be attacked by sending traffic
  victim in this attack can be an application server, a host, a router,
+
that causes the firewall to maintain an excessive number of states
  a firewall, or an entire network.
+
that may jeopardize the firewall's operation overall, in addition to
 +
likely performance impacts.  The firewall then runs out of memory,
 +
and it can no longer instantiate the states required to process
 +
legitimate flows.  Other possible DDoS attacks are discussed in
 +
[[RFC4732]].
  
  Network applications have finite resources like CPU cycles, the
+
In many cases, it may not be possible for network administrators to
  number of processes or threads they can create and use, the maximum
+
determine the cause(s) of an attack.  They may instead just realize
  number of simultaneous connections they can handle, the resources
+
that certain resources seem to be under attack.  This document
  assigned to the control plane, etcWhen processing network traffic,
+
defines a lightweight protocol that allows a DOTS client to request
  such applications are supposed to use these resources to provide the
+
mitigation from one or more DOTS servers for protection against
  intended functionality in the most efficient manner. However, a DDoS
+
detected, suspected, or anticipated attacksThis protocol enables
  attacker may be able to prevent an application from performing its
+
cooperation between DOTS agents to permit a highly automated network
  intended task by making the application exhaust its finite resources.
+
defense that is robust, reliable, and secure.  Note that "secure"
 +
means the support of the features defined in Section 2.4 of
 +
[[RFC8612]].
  
  A TCP DDoS SYN flood [RFC4987], for example, is a memory-exhausting
+
An example of a network diagram that illustrates a deployment of DOTS
  attack while an ACK flood is a CPU-exhausting attackAttacks on the
+
agents is shown in Figure 1In this example, a DOTS server is
  link are carried out by sending enough traffic so that the link
+
operating on the access networkA DOTS client is located on the LAN
  becomes congested, thereby likely causing packet loss for legitimate
+
(Local Area Network), while a DOTS gateway is embedded in the CPE
  trafficStateful firewalls can also be attacked by sending traffic
+
(Customer Premises Equipment).
  that causes the firewall to maintain an excessive number of states
 
  that may jeopardize the firewall's operation overall, in addition to
 
  likely performance impacts.  The firewall then runs out of memory,
 
  and it can no longer instantiate the states required to process
 
  legitimate flows.  Other possible DDoS attacks are discussed in
 
  [RFC4732].
 
  
   In many cases, it may not be possible for network administrators to
+
   Network
   determine the cause(s) of an attack. They may instead just realize
+
   Resource        CPE Router        Access Network    __________
  that certain resources seem to be under attack. This document
+
  +-----------+  +--------------+    +-------------+    /          \
   defines a lightweight protocol that allows a DOTS client to request
+
  |          |___|              |____|            |___ | Internet |
   mitigation from one or more DOTS servers for protection against
+
|DOTS Client|  | DOTS Gateway |   | DOTS Server |   |          |
   detected, suspected, or anticipated attacks.  This protocol enables
+
|          |  |              |   |            |   |          |
   cooperation between DOTS agents to permit a highly automated network
+
  +-----------+  +--------------+   +-------------+   \__________/
  defense that is robust, reliable, and secure. Note that "secure"
 
   means the support of the features defined in Section 2.4 of
 
   [RFC8612].
 
  
  An example of a network diagram that illustrates a deployment of DOTS
+
                Figure 1: Sample DOTS Deployment (1)
  agents is shown in Figure 1.  In this example, a DOTS server is
 
  operating on the access network.  A DOTS client is located on the LAN
 
  (Local Area Network), while a DOTS gateway is embedded in the CPE
 
  (Customer Premises Equipment).
 
  
      Network
+
DOTS servers can also be reachable over the Internet, as depicted in
      Resource        CPE Router        Access Network    __________
+
Figure 2.
    +-----------+  +--------------+    +-------------+    /          \
 
    |          |___|              |____|            |___ | Internet |
 
    |DOTS Client|  | DOTS Gateway |    | DOTS Server |    |          |
 
    |          |  |              |    |            |    |          |
 
    +-----------+  +--------------+    +-------------+    \__________/
 
  
                    Figure 1: Sample DOTS Deployment (1)
+
  Network                                          DDoS Mitigation
 +
  Resource        CPE Router        __________        Service
 +
+-----------+  +--------------+    /          \    +-------------+
 +
|          |___|              |____|          |___ |            |
 +
|DOTS Client|  | DOTS Gateway |    | Internet |    | DOTS Server |
 +
|          |  |              |    |          |    |            |
 +
+-----------+  +--------------+    \__________/    +-------------+
  
  DOTS servers can also be reachable over the Internet, as depicted in
+
                Figure 2: Sample DOTS Deployment (2)
  Figure 2.
 
  
      Network                                          DDoS Mitigation
+
In typical deployments, the DOTS client belongs to a different
      Resource        CPE Router        __________        Service
+
administrative domain than the DOTS server.  For example, the DOTS
    +-----------+  +--------------+    /          \    +-------------+
+
client is embedded in a firewall protecting services owned and
    |          |___|              |____|          |___ |            |
+
operated by a customer, while the DOTS server is owned and operated
    |DOTS Client|  | DOTS Gateway |    | Internet |    | DOTS Server |
+
by a different administrative entity (service provider, typically)
    |          |  |              |    |          |    |            |
+
providing DDoS mitigation services.  The latter might or might not
    +-----------+  +--------------+    \__________/    +-------------+
+
provide connectivity services to the network hosting the DOTS client.
  
                    Figure 2: Sample DOTS Deployment (2)
+
The DOTS server may (not) be co-located with the DOTS mitigator.  In
 +
typical deployments, the DOTS server belongs to the same
 +
administrative domain as the mitigator.  The DOTS client can
 +
communicate directly with a DOTS server or indirectly via a DOTS
 +
gateway.
  
  In typical deployments, the DOTS client belongs to a different
+
This document adheres to the DOTS architecture [DOTS-ARCH]The
  administrative domain than the DOTS serverFor example, the DOTS
+
requirements for DOTS signal channel protocol are documented in
  client is embedded in a firewall protecting services owned and
+
[[RFC8612]]This document satisfies all the use cases discussed in
  operated by a customer, while the DOTS server is owned and operated
+
[DOTS-USE-CASES].
  by a different administrative entity (service provider, typically)
 
  providing DDoS mitigation servicesThe latter might or might not
 
  provide connectivity services to the network hosting the DOTS client.
 
  
  The DOTS server may (not) be co-located with the DOTS mitigatorIn
+
This document focuses on the DOTS signal channelThis is a
  typical deployments, the DOTS server belongs to the same
+
companion document of the DOTS data channel specification [[RFC8783]]
  administrative domain as the mitigator.  The DOTS client can
+
that defines a configuration and a bulk data exchange mechanism
  communicate directly with a DOTS server or indirectly via a DOTS
+
supporting the DOTS signal channel.
  gateway.
 
  
  This document adheres to the DOTS architecture [DOTS-ARCH].  The
+
== Terminology ==
  requirements for DOTS signal channel protocol are documented in
 
  [RFC8612].  This document satisfies all the use cases discussed in
 
  [DOTS-USE-CASES].
 
  
  This document focuses on the DOTS signal channel.  This is a
+
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  companion document of the DOTS data channel specification [RFC8783]
+
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  that defines a configuration and a bulk data exchange mechanism
+
"OPTIONAL" in this document are to be interpreted as described in BCP
  supporting the DOTS signal channel.
+
14 [[RFC2119]][[RFC8174]] when, and only when, they appear in all
 +
capitals, as shown here.
  
2Terminology
+
(D)TLS is used for statements that apply to both Transport Layer
 +
Security [[RFC5246]] [[RFC8446]] and Datagram Transport Layer Security
 +
[[RFC6347]]Specific terms are used for any statement that applies to
 +
either protocol alone.
  
  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
+
The reader should be familiar with the terms defined in [[RFC8612]].
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 
  "OPTIONAL" in this document are to be interpreted as described in BCP
 
  14 [RFC2119][RFC8174] when, and only when, they appear in all
 
  capitals, as shown here.
 
  
  (D)TLS is used for statements that apply to both Transport Layer
+
The meaning of the symbols in YANG tree diagrams is defined in
  Security [RFC5246] [RFC8446] and Datagram Transport Layer Security
+
[[RFC8340]].
  [RFC6347].  Specific terms are used for any statement that applies to
 
  either protocol alone.
 
  
  The reader should be familiar with the terms defined in [RFC8612].
+
== Design Overview ==
  
  The meaning of the symbols in YANG tree diagrams is defined in
+
The DOTS signal channel is built on top of the Constrained
  [RFC8340].
+
Application Protocol (CoAP) [[RFC7252]], a lightweight protocol
 +
originally designed for constrained devices and networks.  The many
 +
features of CoAP (expectation of packet loss, support for
 +
asynchronous Non-confirmable messaging, congestion control, small
 +
message overhead limiting the need for fragmentation, use of minimal
 +
resources, and support for (D)TLS) make it a good candidate upon
 +
which to build the DOTS signaling mechanism.
  
3Design Overview
+
DOTS clients and servers behave as CoAP endpointsBy default, a
 +
DOTS client (or server) behaves as a CoAP client (or server).
 +
Nevertheless, a DOTS client (or server) behaves as a CoAP server (or
 +
client) for specific operations such as DOTS heartbeat operations
 +
(Section 4.7).
  
  The DOTS signal channel is built on top of the Constrained
+
The DOTS signal channel is layered on existing standards (see
  Application Protocol (CoAP) [RFC7252], a lightweight protocol
+
Figure 3).
  originally designed for constrained devices and networks.  The many
 
  features of CoAP (expectation of packet loss, support for
 
  asynchronous Non-confirmable messaging, congestion control, small
 
  message overhead limiting the need for fragmentation, use of minimal
 
  resources, and support for (D)TLS) make it a good candidate upon
 
  which to build the DOTS signaling mechanism.
 
  
  DOTS clients and servers behave as CoAP endpoints.  By default, a
+
                      +---------------------+
   DOTS client (or server) behaves as a CoAP client (or server).
+
                      | DOTS Signal Channel |
   Nevertheless, a DOTS client (or server) behaves as a CoAP server (or
+
                      +---------------------+
  client) for specific operations such as DOTS heartbeat operations
+
                      |        CoAP       |
  (Section 4.7).
+
                      +----------+----------+
 +
                      |  TLS   |  DTLS  |
 +
                      +----------+----------+
 +
                      |  TCP   |  UDP    |
 +
                      +----------+----------+
 +
                      |          IP        |
 +
                      +---------------------+
  
  The DOTS signal channel is layered on existing standards (see
+
  Figure 3: Abstract Layering of DOTS Signal Channel over CoAP over
  Figure 3).
+
                                (D)TLS
  
                          +---------------------+
+
In some cases, a DOTS client and server may have a mutual agreement
                          | DOTS Signal Channel |
+
to use a specific port number, such as by explicit configuration or
                          +---------------------+
+
dynamic discovery [DOTS-SERVER-DISC].  Absent such mutual agreement,
                          |        CoAP        |
+
the DOTS signal channel MUST run over port number 4646 as defined in
                          +----------+----------+
+
Section 9.1, for both UDP and TCP.  In order to use a distinct port
                          |  TLS    |  DTLS  |
+
number (as opposed to 4646), DOTS clients and servers SHOULD support
                          +----------+----------+
+
a configurable parameter to supply the port number to use.
                          |  TCP   |  UDP    |
 
                          +----------+----------+
 
                          |          IP        |
 
                          +---------------------+
 
  
    Figure 3: Abstract Layering of DOTS Signal Channel over CoAP over
+
  |  Note: The rationale for not using the default port number 5684
                                  (D)TLS
+
  |  ((D)TLS CoAP) is to avoid the discovery of services and
 +
  |  resources discussed in [[RFC7252]] and allow for differentiated
 +
  |  behaviors in environments where both a DOTS gateway and an
 +
  |  Internet of Things (IoT) gateway (e.g., Figure 3 of [[RFC7452]])
 +
  |  are co-located.
 +
  | 
 +
  |  Particularly, the use of a default port number is meant to
 +
  |  simplify DOTS deployment in scenarios where no explicit IP
 +
  |  address configuration is required.  For example, the use of the
 +
  |  default router as the DOTS server aims to ease DOTS deployment
 +
  |  within LANs (in which CPEs embed a DOTS gateway as illustrated
 +
  |  in Figures 1 and 2) without requiring a sophisticated discovery
 +
  |  method and configuration tasks within the LAN.  It is also
 +
  |  possible to use anycast addresses for DOTS servers to simplify
 +
  |  DOTS client configuration, including service discovery.  In
 +
  |  such an anycast-based scenario, a DOTS client initiating a DOTS
 +
  |  session to the DOTS server anycast address may, for example, be
 +
  |  (1) redirected to the DOTS server unicast address to be used by
 +
  |  the DOTS client following the procedure discussed in
 +
  |  Section 4.6 or (2) relayed to a unicast DOTS server.
  
  In some cases, a DOTS client and server may have a mutual agreement
+
The signal channel uses the "coaps" URI scheme defined in Section 6
  to use a specific port number, such as by explicit configuration or
+
of [[RFC7252]] and the "coaps+tcp" URI scheme defined in Section 8.2 of
  dynamic discovery [DOTS-SERVER-DISC].  Absent such mutual agreement,
+
[[RFC8323]] to identify DOTS server resources that are accessible using
  the DOTS signal channel MUST run over port number 4646 as defined in
+
CoAP over UDP secured with DTLS and CoAP over TCP secured with TLS,
  Section 9.1, for both UDP and TCP.  In order to use a distinct port
+
respectively.
  number (as opposed to 4646), DOTS clients and servers SHOULD support
 
  a configurable parameter to supply the port number to use.
 
  
      |  Note: The rationale for not using the default port number 5684
+
The DOTS signal channel can be established between two DOTS agents
      | ((D)TLS CoAP) is to avoid the discovery of services and
+
prior to or during an attack. The DOTS signal channel is initiated
      |  resources discussed in [RFC7252] and allow for differentiated
+
by the DOTS client.  The DOTS client can then negotiate, configure,
      |  behaviors in environments where both a DOTS gateway and an
+
and retrieve the DOTS signal channel session behavior with its DOTS
      |  Internet of Things (IoT) gateway (e.g., Figure 3 of [RFC7452])
+
peer (Section 4.5).  Once the signal channel is established, the DOTS
      |  are co-located.
+
agents may periodically send heartbeats to keep the channel active
      |  
+
(Section 4.7)At any time, the DOTS client may send a mitigation
      |  Particularly, the use of a default port number is meant to
+
request message (Section 4.4) to a DOTS server over the active signal
      |  simplify DOTS deployment in scenarios where no explicit IP
+
channelWhile mitigation is active (because of the higher
      |  address configuration is requiredFor example, the use of the
+
likelihood of packet loss during a DDoS attack), the DOTS server
      |  default router as the DOTS server aims to ease DOTS deployment
+
periodically sends status messages to the client, including basic
      |  within LANs (in which CPEs embed a DOTS gateway as illustrated
+
mitigation feedback detailsMitigation remains active until the
      |  in Figures 1 and 2) without requiring a sophisticated discovery
+
DOTS client explicitly terminates mitigation or the mitigation
      |  method and configuration tasks within the LANIt is also
+
lifetime expires. Also, the DOTS server may rely on the signal
      |  possible to use anycast addresses for DOTS servers to simplify
+
channel session loss to trigger mitigation for preconfigured
      |  DOTS client configuration, including service discoveryIn
+
mitigation requests (if any).
      |  such an anycast-based scenario, a DOTS client initiating a DOTS
 
      | session to the DOTS server anycast address may, for example, be
 
      |  (1) redirected to the DOTS server unicast address to be used by
 
      |  the DOTS client following the procedure discussed in
 
      |  Section 4.6 or (2) relayed to a unicast DOTS server.
 
  
  The signal channel uses the "coaps" URI scheme defined in Section 6
+
DOTS signaling can happen with DTLS over UDP and TLS over TCP.
  of [RFC7252] and the "coaps+tcp" URI scheme defined in Section 8.2 of
+
Likewise, DOTS requests may be sent using IPv4 or IPv6 transfer
  [RFC8323] to identify DOTS server resources that are accessible using
+
capabilities.  A Happy Eyeballs procedure for the DOTS signal channel
  CoAP over UDP secured with DTLS and CoAP over TCP secured with TLS,
+
is specified in Section 4.3.
  respectively.
 
  
  The DOTS signal channel can be established between two DOTS agents
+
A DOTS client is entitled to access only the resources it creates.
  prior to or during an attack.  The DOTS signal channel is initiated
+
In particular, a DOTS client cannot retrieve data related to
  by the DOTS client.  The DOTS client can then negotiate, configure,
+
mitigation requests created by other DOTS clients of the same DOTS
  and retrieve the DOTS signal channel session behavior with its DOTS
+
client domain.
  peer (Section 4.5).  Once the signal channel is established, the DOTS
 
  agents may periodically send heartbeats to keep the channel active
 
  (Section 4.7).  At any time, the DOTS client may send a mitigation
 
  request message (Section 4.4) to a DOTS server over the active signal
 
  channel.  While mitigation is active (because of the higher
 
  likelihood of packet loss during a DDoS attack), the DOTS server
 
  periodically sends status messages to the client, including basic
 
  mitigation feedback details.  Mitigation remains active until the
 
  DOTS client explicitly terminates mitigation or the mitigation
 
  lifetime expires.  Also, the DOTS server may rely on the signal
 
  channel session loss to trigger mitigation for preconfigured
 
  mitigation requests (if any).
 
  
  DOTS signaling can happen with DTLS over UDP and TLS over TCP.
+
Messages exchanged between DOTS agents are serialized using Concise
  Likewise, DOTS requests may be sent using IPv4 or IPv6 transfer
+
Binary Object Representation (CBOR) [[RFC7049]], a binary encoding
  capabilities.  A Happy Eyeballs procedure for the DOTS signal channel
+
scheme designed for small code and message size. CBOR-encoded
  is specified in Section 4.3.
+
payloads are used to carry signal channel-specific payload messages
 +
that convey request parameters and response information such as
 +
errors.  In order to allow the reusing of data models across
 +
protocols, [[RFC7951]] specifies the JavaScript Object Notation (JSON)
 +
encoding of YANG-modeled data.  A similar effort for CBOR is defined
 +
in [CORE-YANG-CBOR].
  
  A DOTS client is entitled to access only the resources it creates.
+
DOTS agents determine that a CBOR data structure is a DOTS signal
  In particular, a DOTS client cannot retrieve data related to
+
channel object from the application context, such as from the port
  mitigation requests created by other DOTS clients of the same DOTS
+
number assigned to the DOTS signal channel. The other method DOTS
  client domain.
+
agents use to indicate that a CBOR data structure is a DOTS signal
 +
channel object is the use of the "application/dots+cbor" content type
 +
(Section 9.3).
  
  Messages exchanged between DOTS agents are serialized using Concise
+
This document specifies a YANG module for representing DOTS
  Binary Object Representation (CBOR) [RFC7049], a binary encoding
+
mitigation scopes, DOTS signal channel session configuration data,
  scheme designed for small code and message size.  CBOR-encoded
+
and DOTS redirected signaling (Section 5)All parameters in the
  payloads are used to carry signal channel-specific payload messages
+
payload of the DOTS signal channel are mapped to CBOR types as
  that convey request parameters and response information such as
+
specified in Table 5 (Section 6).
  errorsIn order to allow the reusing of data models across
 
  protocols, [RFC7951] specifies the JavaScript Object Notation (JSON)
 
  encoding of YANG-modeled data.  A similar effort for CBOR is defined
 
  in [CORE-YANG-CBOR].
 
  
  DOTS agents determine that a CBOR data structure is a DOTS signal
+
In order to prevent fragmentation, DOTS agents must follow the
  channel object from the application context, such as from the port
+
recommendations documented in Section 4.6 of [[RFC7252]]Refer to
  number assigned to the DOTS signal channelThe other method DOTS
+
Section 7.3 for more details.
  agents use to indicate that a CBOR data structure is a DOTS signal
 
  channel object is the use of the "application/dots+cbor" content type
 
  (Section 9.3).
 
  
  This document specifies a YANG module for representing DOTS
+
DOTS agents MUST support GET, PUT, and DELETE CoAP methodsThe
  mitigation scopes, DOTS signal channel session configuration data,
+
payload included in CoAP responses with 2.xx Response Codes MUST be
  and DOTS redirected signaling (Section 5)All parameters in the
+
of content type "application/dots+cbor".  CoAP responses with 4.xx
  payload of the DOTS signal channel are mapped to CBOR types as
+
and 5.xx error Response Codes MUST include a diagnostic payload
  specified in Table 5 (Section 6).
+
(Section 5.5.2 of [[RFC7252]]).  The diagnostic payload may contain
 +
additional information to aid troubleshooting.
  
  In order to prevent fragmentation, DOTS agents must follow the
+
In deployments where multiple DOTS clients are enabled in a network
  recommendations documented in Section 4.6 of [RFC7252]. Refer to
+
(owned and operated by the same entity), the DOTS server may detect
  Section 7.3 for more details.
+
conflicting mitigation requests from these clients.  This document
 +
does not aim to specify a comprehensive list of conditions under
 +
which a DOTS server will characterize two mitigation requests from
 +
distinct DOTS clients as conflicting, nor does it recommend a DOTS
 +
server behavior for processing conflicting mitigation requests.
 +
Those considerations are implementation and deployment specific.
 +
Nevertheless, this document specifies the mechanisms to notify DOTS
 +
clients when conflicts occur, including the conflict cause
 +
(Section 4.4).
  
  DOTS agents MUST support GET, PUT, and DELETE CoAP methods.  The
+
In deployments where one or more translators (e.g., Traditional NAT
  payload included in CoAP responses with 2.xx Response Codes MUST be
+
[[RFC3022]], CGN [[RFC6888]], NAT64 [[RFC6146]], NPTv6 [[RFC6296]]) are
  of content type "application/dots+cbor"CoAP responses with 4.xx
+
enabled between the client's network and the DOTS server, any DOTS
  and 5.xx error Response Codes MUST include a diagnostic payload
+
signal channel messages forwarded to a DOTS server MUST NOT include
  (Section 5.5.2 of [RFC7252]).  The diagnostic payload may contain
+
internal IP addresses/prefixes and/or port numbers; instead, external
  additional information to aid troubleshooting.
+
addresses/prefixes and/or port numbers as assigned by the translator
 +
MUST be usedThis document does not make any recommendations about
 +
possible translator discovery mechanisms. The following are some
 +
(non-exhaustive) deployment examples that may be considered:
  
  In deployments where multiple DOTS clients are enabled in a network
+
*  Port Control Protocol (PCP) [[RFC6887]] or Session Traversal
   (owned and operated by the same entity), the DOTS server may detect
+
   Utilities for NAT (STUN) [[RFC8489]] may be used to retrieve the
   conflicting mitigation requests from these clientsThis document
+
   external addresses/prefixes and/or port numbersInformation
   does not aim to specify a comprehensive list of conditions under
+
   retrieved by means of PCP or STUN will be used to feed the DOTS
   which a DOTS server will characterize two mitigation requests from
+
   signal channel messages that will be sent to a DOTS server.
  distinct DOTS clients as conflicting, nor does it recommend a DOTS
 
  server behavior for processing conflicting mitigation requests.
 
  Those considerations are implementation and deployment specific.
 
  Nevertheless, this document specifies the mechanisms to notify DOTS
 
  clients when conflicts occur, including the conflict cause
 
  (Section 4.4).
 
  
  In deployments where one or more translators (e.g., Traditional NAT
+
*  A DOTS gateway may be co-located with the translator. The DOTS
   [RFC3022], CGN [RFC6888], NAT64 [RFC6146], NPTv6 [RFC6296]) are
+
   gateway will need to update the DOTS messages based upon the local
  enabled between the client's network and the DOTS server, any DOTS
+
   translator's binding table.
  signal channel messages forwarded to a DOTS server MUST NOT include
 
  internal IP addresses/prefixes and/or port numbers; instead, external
 
  addresses/prefixes and/or port numbers as assigned by the translator
 
   MUST be used.  This document does not make any recommendations about
 
  possible translator discovery mechanisms. The following are some
 
  (non-exhaustive) deployment examples that may be considered:
 
  
  *  Port Control Protocol (PCP) [RFC6887] or Session Traversal
+
== DOTS Signal Channel: Messages & Behaviors ==
      Utilities for NAT (STUN) [RFC8489] may be used to retrieve the
 
      external addresses/prefixes and/or port numbers.  Information
 
      retrieved by means of PCP or STUN will be used to feed the DOTS
 
      signal channel messages that will be sent to a DOTS server.
 
  
  *  A DOTS gateway may be co-located with the translator.  The DOTS
+
=== DOTS Server(s) Discovery ===
      gateway will need to update the DOTS messages based upon the local
 
      translator's binding table.
 
  
4DOTS Signal Channel: Messages & Behaviors
+
This document assumes that DOTS clients are provisioned with the
 +
reachability information of their DOTS server(s) using any of a
 +
variety of means (e.g., local configuration or dynamic means such as
 +
DHCP [DOTS-SERVER-DISC])The description of such means is out of
 +
scope of this document.
  
4.1.  DOTS Server(s) Discovery
+
Likewise, it is out of the scope of this document to specify the
 +
behavior to be followed by a DOTS client in order to send DOTS
 +
requests when multiple DOTS servers are provisioned (e.g., contact
 +
all DOTS servers, select one DOTS server among the list)Such
 +
behavior is specified in other documents (e.g., [DOTS-MH]).
  
  This document assumes that DOTS clients are provisioned with the
+
=== CoAP URIs ===
  reachability information of their DOTS server(s) using any of a
 
  variety of means (e.g., local configuration or dynamic means such as
 
  DHCP [DOTS-SERVER-DISC]).  The description of such means is out of
 
  scope of this document.
 
  
  Likewise, it is out of the scope of this document to specify the
+
The DOTS server MUST support the use of the path prefix of "/.well-
  behavior to be followed by a DOTS client in order to send DOTS
+
known/" as defined in [[RFC8615]] and the registered name of "dots".
  requests when multiple DOTS servers are provisioned (e.g., contact
+
Each DOTS operation is denoted by a path suffix that indicates the
  all DOTS servers, select one DOTS server among the list).  Such
+
intended operation.  The operation path (Table 1) is appended to the
  behavior is specified in other documents (e.g., [DOTS-MH]).
+
path prefix to form the URI used with a CoAP request to perform the
 +
desired DOTS operation.
  
4.2. CoAP URIs
+
      +-----------------------+----------------+-------------+
 +
      | Operation            | Operation Path | Details    |
 +
      +=======================+================+=============+
 +
      | Mitigation            | /mitigate      | Section 4.4 |
 +
      +-----------------------+----------------+-------------+
 +
      | Session configuration | /config        | Section 4.5 |
 +
      +-----------------------+----------------+-------------+
 +
      | Heartbeat            | /hb            | Section 4.7 |
 +
      +-----------------------+----------------+-------------+
  
  The DOTS server MUST support the use of the path prefix of "/.well-
+
            Table 1: Operations and Corresponding URIs
  known/" as defined in [RFC8615] and the registered name of "dots".
 
  Each DOTS operation is denoted by a path suffix that indicates the
 
  intended operation.  The operation path (Table 1) is appended to the
 
  path prefix to form the URI used with a CoAP request to perform the
 
  desired DOTS operation.
 
  
        +-----------------------+----------------+-------------+
+
=== Happy Eyeballs for DOTS Signal Channel ===
        | Operation            | Operation Path | Details    |
 
        +=======================+================+=============+
 
        | Mitigation            | /mitigate      | Section 4.4 |
 
        +-----------------------+----------------+-------------+
 
        | Session configuration | /config        | Section 4.5 |
 
        +-----------------------+----------------+-------------+
 
        | Heartbeat            | /hb            | Section 4.7 |
 
        +-----------------------+----------------+-------------+
 
  
                Table 1: Operations and Corresponding URIs
+
[[RFC8612]] mentions that DOTS agents will have to support both
 +
connectionless and connection-oriented protocols.  As such, the DOTS
 +
signal channel is designed to operate with DTLS over UDP and TLS over
 +
TCP.  Further, a DOTS client may acquire a list of IPv4 and IPv6
 +
addresses (Section 4.1), each of which can be used to contact the
 +
DOTS server using UDP and TCP.  If no list of IPv4 and IPv6 addresses
 +
to contact the DOTS server is configured (or discovered), the DOTS
 +
client adds the IPv4/IPv6 addresses of its default router to the
 +
candidate list to contact the DOTS server.
  
4.3.  Happy Eyeballs for DOTS Signal Channel
+
The following specifies the procedure to follow to select the address
 +
family and the transport protocol for sending DOTS signal channel
 +
messages.
  
  [RFC8612] mentions that DOTS agents will have to support both
+
Such a procedure is needed to avoid experiencing long connection
  connectionless and connection-oriented protocolsAs such, the DOTS
+
delaysFor example, if an IPv4 path to a DOTS server is functional,
  signal channel is designed to operate with DTLS over UDP and TLS over
+
but the DOTS server's IPv6 path is nonfunctional, a dual-stack DOTS
  TCP.  Further, a DOTS client may acquire a list of IPv4 and IPv6
+
client may experience a significant connection delay compared to an
  addresses (Section 4.1), each of which can be used to contact the
+
IPv4-only DOTS client in the same network conditionsThe other
  DOTS server using UDP and TCPIf no list of IPv4 and IPv6 addresses
+
problem is that if a middlebox between the DOTS client and DOTS
  to contact the DOTS server is configured (or discovered), the DOTS
+
server is configured to block UDP traffic, the DOTS client will fail
  client adds the IPv4/IPv6 addresses of its default router to the
+
to establish a DTLS association with the DOTS server; consequently,
  candidate list to contact the DOTS server.
+
it will have to fall back to TLS over TCP, thereby incurring
 +
significant connection delays.
  
  The following specifies the procedure to follow to select the address
+
To overcome these connection setup problems, the DOTS client attempts
  family and the transport protocol for sending DOTS signal channel
+
to connect to its DOTS server(s) using both IPv6 and IPv4, and it
  messages.
+
tries both DTLS over UDP and TLS over TCP following a DOTS Happy
 +
Eyeballs approach.  To some extent, this approach is similar to the
 +
Happy Eyeballs mechanism defined in [[RFC8305]].  The connection
 +
attempts are performed by the DOTS client when it initializes or, in
 +
general, when it has to select an address family and transport to
 +
contact its DOTS server.  The results of the Happy Eyeballs procedure
 +
are used by the DOTS client for sending its subsequent messages to
 +
the DOTS server.  The differences in behavior with respect to the
 +
Happy Eyeballs mechanism [[RFC8305]] are listed below:
  
   Such a procedure is needed to avoid experiencing long connection
+
*  The order of preference of the DOTS signal channel address family
   delays.  For example, if an IPv4 path to a DOTS server is functional,
+
   and transport protocol (most preferred first) is the following:
  but the DOTS server's IPv6 path is nonfunctional, a dual-stack DOTS
+
   UDP over IPv6, UDP over IPv4, TCP over IPv6, and finally TCP over
  client may experience a significant connection delay compared to an
+
   IPv4.  This order adheres to the address preference order
   IPv4-only DOTS client in the same network conditionsThe other
+
   specified in [[RFC6724]] and the DOTS signal channel preference that
   problem is that if a middlebox between the DOTS client and DOTS
+
   promotes the use of UDP over TCP (to avoid TCP's head of line
  server is configured to block UDP traffic, the DOTS client will fail
+
   blocking).
   to establish a DTLS association with the DOTS server; consequently,
 
  it will have to fall back to TLS over TCP, thereby incurring
 
   significant connection delays.
 
  
  To overcome these connection setup problems, the DOTS client attempts
+
*  After successfully establishing a connection, the DOTS client MUST
   to connect to its DOTS server(s) using both IPv6 and IPv4, and it
+
   cache information regarding the outcome of each connection attempt
   tries both DTLS over UDP and TLS over TCP following a DOTS Happy
+
   for a specific time period; it uses that information to avoid
   Eyeballs approachTo some extent, this approach is similar to the
+
   thrashing the network with subsequent attemptsThe cached
   Happy Eyeballs mechanism defined in [RFC8305]The connection
+
  information is flushed when its age exceeds a specific time period
   attempts are performed by the DOTS client when it initializes or, in
+
   on the order of few minutes (e.g., 10 min)Typically, if the
  general, when it has to select an address family and transport to
+
   DOTS client has to reestablish the connection with the same DOTS
   contact its DOTS server.  The results of the Happy Eyeballs procedure
+
   server within a few seconds after the Happy Eyeballs mechanism is
  are used by the DOTS client for sending its subsequent messages to
+
   completed, caching avoids thrashing the network especially in the
   the DOTS server.  The differences in behavior with respect to the
+
   presence of DDoS attack traffic.
   Happy Eyeballs mechanism [RFC8305] are listed below:
 
  
  The order of preference of the DOTS signal channel address family
+
If a DOTS signal channel session is established with TLS (but DTLS
      and transport protocol (most preferred first) is the following:
+
  failed), the DOTS client periodically repeats the mechanism to
      UDP over IPv6, UDP over IPv4, TCP over IPv6, and finally TCP over
+
  discover whether DOTS signal channel messages with DTLS over UDP
      IPv4.  This order adheres to the address preference order
+
  become available from the DOTS server; this is so the DOTS client
      specified in [RFC6724] and the DOTS signal channel preference that
+
  can migrate the DOTS signal channel from TCP to UDP.  Such probing
      promotes the use of UDP over TCP (to avoid TCP's head of line
+
  SHOULD NOT be done more frequently than every 24 hours and MUST
      blocking).
+
  NOT be done more frequently than every 5 minutes.
  
  *  After successfully establishing a connection, the DOTS client MUST
+
When connection attempts are made during an attack, the DOTS client
      cache information regarding the outcome of each connection attempt
+
SHOULD use a "Connection Attempt Delay" [[RFC8305]] set to 100 ms.
      for a specific time period; it uses that information to avoid
 
      thrashing the network with subsequent attempts.  The cached
 
      information is flushed when its age exceeds a specific time period
 
      on the order of few minutes (e.g., 10 min).  Typically, if the
 
      DOTS client has to reestablish the connection with the same DOTS
 
      server within a few seconds after the Happy Eyeballs mechanism is
 
      completed, caching avoids thrashing the network especially in the
 
      presence of DDoS attack traffic.
 
  
  *  If a DOTS signal channel session is established with TLS (but DTLS
+
In Figure 4, the DOTS client proceeds with the connection attempts
      failed), the DOTS client periodically repeats the mechanism to
+
following the rules in [[RFC8305]].  In this example, it is assumed
      discover whether DOTS signal channel messages with DTLS over UDP
+
that the IPv6 path is broken and UDP traffic is dropped by a
      become available from the DOTS server; this is so the DOTS client
+
middlebox, but this has little impact on the DOTS client because
      can migrate the DOTS signal channel from TCP to UDP.  Such probing
+
there is not a long delay before using IPv4 and TCP.
      SHOULD NOT be done more frequently than every 24 hours and MUST
 
      NOT be done more frequently than every 5 minutes.
 
  
  When connection attempts are made during an attack, the DOTS client
+
+-----------+                                        +-----------+
  SHOULD use a "Connection Attempt Delay" [RFC8305] set to 100 ms.
+
|DOTS Client|                                        |DOTS Server|
 +
+-----------+                                        +-----------+
 +
      |                                                    |
 +
    T0 |--DTLS ClientHello, IPv6 ---->X                      |
 +
    T1 |--DTLS ClientHello, IPv4 ---->X                      |
 +
    T2 |--TCP SYN, IPv6-------------->X                      |
 +
    T3 |--TCP SYN, IPv4------------------------------------->|
 +
      |<-TCP SYNACK-----------------------------------------|
 +
      |--TCP ACK------------------------------------------->|
 +
      |<------------Establish TLS Session------------------>|
 +
      |----------------DOTS signal------------------------->|
 +
      |                                                    |
  
  In Figure 4, the DOTS client proceeds with the connection attempts
+
  Note:
   following the rules in [RFC8305]. In this example, it is assumed
+
   * Retransmission messages are not shown.
  that the IPv6 path is broken and UDP traffic is dropped by a
+
   * T1-T0=T2-T1=T3-T2= Connection Attempt Delay.
   middlebox, but this has little impact on the DOTS client because
 
  there is not a long delay before using IPv4 and TCP.
 
  
    +-----------+                                        +-----------+
+
            Figure 4: DOTS Happy Eyeballs (Sample Flow)
    |DOTS Client|                                        |DOTS Server|
 
    +-----------+                                        +-----------+
 
          |                                                    |
 
      T0 |--DTLS ClientHello, IPv6 ---->X                      |
 
      T1 |--DTLS ClientHello, IPv4 ---->X                      |
 
      T2 |--TCP SYN, IPv6-------------->X                      |
 
      T3 |--TCP SYN, IPv4------------------------------------->|
 
          |<-TCP SYNACK-----------------------------------------|
 
          |--TCP ACK------------------------------------------->|
 
          |<------------Establish TLS Session------------------>|
 
          |----------------DOTS signal------------------------->|
 
          |                                                    |
 
  
    Note:
+
A single DOTS signal channel between DOTS agents can be used to
      * Retransmission messages are not shown.
+
exchange multiple DOTS signal messages. To reduce DOTS client and
      * T1-T0=T2-T1=T3-T2= Connection Attempt Delay.
+
DOTS server workload, DOTS clients SHOULD reuse the (D)TLS session.
  
                Figure 4: DOTS Happy Eyeballs (Sample Flow)
+
=== DOTS Mitigation Methods ===
  
  A single DOTS signal channel between DOTS agents can be used to
+
The following methods are used by a DOTS client to request, withdraw,
  exchange multiple DOTS signal messages.  To reduce DOTS client and
+
or retrieve the status of mitigation requests:
  DOTS server workload, DOTS clients SHOULD reuse the (D)TLS session.
 
  
4.4.  DOTS Mitigation Methods
+
PUT:      DOTS clients use the PUT method to request mitigation from
 +
          a DOTS server (Section 4.4.1)During active mitigation,
 +
          DOTS clients may use PUT requests to carry mitigation
 +
          efficacy updates to the DOTS server (Section 4.4.3).
  
  The following methods are used by a DOTS client to request, withdraw,
+
GET:      DOTS clients may use the GET method to subscribe to DOTS
  or retrieve the status of mitigation requests:
+
          server status messages or to retrieve the list of its
 +
          mitigations maintained by a DOTS server (Section 4.4.2).
  
  PUT:     DOTS clients use the PUT method to request mitigation from
+
DELETE:   DOTS clients use the DELETE method to withdraw a request
            a DOTS server (Section 4.4.1).  During active mitigation,
+
          for mitigation from a DOTS server (Section 4.4.4).
            DOTS clients may use PUT requests to carry mitigation
 
            efficacy updates to the DOTS server (Section 4.4.3).
 
  
  GET:      DOTS clients may use the GET method to subscribe to DOTS
+
Mitigation request and response messages are marked as Non-
            server status messages or to retrieve the list of its
+
confirmable messages (Section 2.2 of [[RFC7252]]).
            mitigations maintained by a DOTS server (Section 4.4.2).
 
  
  DELETE:  DOTS clients use the DELETE method to withdraw a request
+
DOTS agents MUST NOT send more than one UDP datagram per round-trip
            for mitigation from a DOTS server (Section 4.4.4).
+
time (RTT) to the peer DOTS agent on average following the data
 +
transmission guidelines discussed in Section 3.1.3 of [[RFC8085]].
  
  Mitigation request and response messages are marked as Non-
+
Requests marked by the DOTS client as Non-confirmable messages are
  confirmable messages (Section 2.2 of [RFC7252]).
+
sent at regular intervals until a response is received from the DOTS
 +
server.  If the DOTS client cannot maintain an RTT estimate, it MUST
 +
NOT send more than one Non-confirmable request every 3 seconds, and
 +
SHOULD use an even less aggressive rate whenever possible (case 2 in
 +
Section 3.1.3 of [[RFC8085]]).  Mitigation requests MUST NOT be delayed
 +
because of checks on probing rate (Section 4.7 of [[RFC7252]]).
  
  DOTS agents MUST NOT send more than one UDP datagram per round-trip
+
JSON encoding of YANG modeled data [[RFC7951]] is used to illustrate
  time (RTT) to the peer DOTS agent on average following the data
+
the various methods defined in the following subsections.  Also, the
  transmission guidelines discussed in Section 3.1.3 of [RFC8085].
+
examples use the Labels defined in Sections 9.6.2, 9.6.3, 9.6.4, and
 +
9.6.5.
  
  Requests marked by the DOTS client as Non-confirmable messages are
+
==== Request Mitigation ====
  sent at regular intervals until a response is received from the DOTS
 
  server.  If the DOTS client cannot maintain an RTT estimate, it MUST
 
  NOT send more than one Non-confirmable request every 3 seconds, and
 
  SHOULD use an even less aggressive rate whenever possible (case 2 in
 
  Section 3.1.3 of [RFC8085]).  Mitigation requests MUST NOT be delayed
 
  because of checks on probing rate (Section 4.7 of [RFC7252]).
 
  
  JSON encoding of YANG modeled data [RFC7951] is used to illustrate
+
When a DOTS client requires mitigation for some reason, the DOTS
  the various methods defined in the following subsections.  Also, the
+
client uses the CoAP PUT method to send a mitigation request to its
  examples use the Labels defined in Sections 9.6.2, 9.6.3, 9.6.4, and
+
DOTS server(s) (Figures 5 and 6).
  9.6.5.
 
  
4.4.1.  Request Mitigation
+
If a DOTS client is entitled to solicit the DOTS service, the DOTS
 +
server enables mitigation on behalf of the DOTS client by
 +
communicating the DOTS client's request to a mitigator (which may be
 +
co-located with the DOTS server) and relaying the feedback of the
 +
thus-selected mitigator to the requesting DOTS client.
  
  When a DOTS client requires mitigation for some reason, the DOTS
+
  Header: PUT (Code=0.03)
  client uses the CoAP PUT method to send a mitigation request to its
+
  Uri-Path: ".well-known"
  DOTS server(s) (Figures 5 and 6).
+
  Uri-Path: "dots"
 +
  Uri-Path: "mitigate"
 +
  Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
 +
  Uri-Path: "mid=123"
 +
  Content-Format: "application/dots+cbor"
  
  If a DOTS client is entitled to solicit the DOTS service, the DOTS
+
  {
  server enables mitigation on behalf of the DOTS client by
+
    ...
  communicating the DOTS client's request to a mitigator (which may be
+
  }
  co-located with the DOTS server) and relaying the feedback of the
 
  thus-selected mitigator to the requesting DOTS client.
 
  
    Header: PUT (Code=0.03)
+
          Figure 5: PUT to Convey DOTS Mitigation Requests
    Uri-Path: ".well-known"
 
    Uri-Path: "dots"
 
    Uri-Path: "mitigate"
 
    Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
 
    Uri-Path: "mid=123"
 
    Content-Format: "application/dots+cbor"
 
  
    {
+
The order of the Uri-Path options is important as it defines the CoAP
      ...
+
resource. In particular, 'mid' MUST follow 'cuid'.
    }
 
  
              Figure 5: PUT to Convey DOTS Mitigation Requests
+
The additional Uri-Path parameters to those defined in Section 4.2
 +
are as follows:
  
  The order of the Uri-Path options is important as it defines the CoAP
+
cuid:  Stands for Client Unique Identifier.  A globally unique
  resourceIn particular, 'mid' MUST follow 'cuid'.
+
      identifier that is meant to prevent collisions among DOTS
 +
      clients, especially those from the same domainIt MUST be
 +
      generated by DOTS clients.
  
  The additional Uri-Path parameters to those defined in Section 4.2
+
      For the reasons discussed in Appendix A, implementations SHOULD
  are as follows:
+
      set 'cuid' using the following procedure: first, the DOTS
 +
      client inputs one of the following into the SHA-256 [[RFC6234]]
 +
      cryptographic hash: the DER-encoded ASN.1 representation of the
 +
      Subject Public Key Info (SPKI) of its X.509 certificate
 +
      [[RFC5280]], its raw public key [[RFC7250]], the "Pre-Shared Key
 +
      (PSK) identity" it uses in the TLS 1.2 ClientKeyExchange
 +
      message, or the "identity" it uses in the "pre_shared_key" TLS
 +
      1.3 extension.  Then, the output of the cryptographic hash
 +
      algorithm is truncated to 16 bytes; truncation is done by
 +
      stripping off the final 16 bytes.  The truncated output is
 +
      base64url encoded (Section 5 of [[RFC4648]]) with the trailing
 +
      "=" removed from the encoding, and the resulting value used as
 +
      the 'cuid'.
  
  cuid:  Stands for Client Unique Identifier.  A globally unique
+
      The 'cuid' is intended to be stable when communicating with a
        identifier that is meant to prevent collisions among DOTS
+
      given DOTS server, i.e., the 'cuid' used by a DOTS client
        clients, especially those from the same domainIt MUST be
+
      SHOULD NOT change over timeDistinct 'cuid' values MAY be
        generated by DOTS clients.
+
      used by a single DOTS client per DOTS server.
  
        For the reasons discussed in Appendix A, implementations SHOULD
+
      If a DOTS client has to change its 'cuid' for some reason, it
        set 'cuid' using the following procedure: first, the DOTS
+
      MUST NOT do so when mitigations are still active for the old
        client inputs one of the following into the SHA-256 [RFC6234]
+
      'cuid'. The 'cuid' SHOULD be 22 characters to avoid DOTS
        cryptographic hash: the DER-encoded ASN.1 representation of the
+
      signal message fragmentation over UDP. Furthermore, if that
        Subject Public Key Info (SPKI) of its X.509 certificate
+
      DOTS client created aliases and filtering entries at the DOTS
        [RFC5280], its raw public key [RFC7250], the "Pre-Shared Key
+
      server by means of the DOTS data channel, it MUST delete all
        (PSK) identity" it uses in the TLS 1.2 ClientKeyExchange
+
      the entries bound to the old 'cuid' and reinstall them using
        message, or the "identity" it uses in the "pre_shared_key" TLS
+
      the new 'cuid'.
        1.3 extension.  Then, the output of the cryptographic hash
 
        algorithm is truncated to 16 bytes; truncation is done by
 
        stripping off the final 16 bytes.  The truncated output is
 
        base64url encoded (Section 5 of [RFC4648]) with the trailing
 
        "=" removed from the encoding, and the resulting value used as
 
        the 'cuid'.
 
  
        The 'cuid' is intended to be stable when communicating with a
+
      DOTS servers MUST return 4.09 (Conflict) error code to a DOTS
        given DOTS server, i.e., the 'cuid' used by a DOTS client
+
      peer to notify that the 'cuid' is already in use by another
        SHOULD NOT change over timeDistinct 'cuid' values MAY be
+
      DOTS client.  Upon receipt of that error code, a new 'cuid'
        used by a single DOTS client per DOTS server.
+
      MUST be generated by the DOTS peer (e.g., using [[RFC4122]]).
  
        If a DOTS client has to change its 'cuid' for some reason, it
+
      Client-domain DOTS gateways MUST handle 'cuid' collision
        MUST NOT do so when mitigations are still active for the old
+
      directly and it is RECOMMENDED that 'cuid' collision is handled
        'cuid'.  The 'cuid' SHOULD be 22 characters to avoid DOTS
+
      directly by server-domain DOTS gateways.
        signal message fragmentation over UDP.  Furthermore, if that
 
        DOTS client created aliases and filtering entries at the DOTS
 
        server by means of the DOTS data channel, it MUST delete all
 
        the entries bound to the old 'cuid' and reinstall them using
 
        the new 'cuid'.
 
  
        DOTS servers MUST return 4.09 (Conflict) error code to a DOTS
+
      DOTS gateways MAY rewrite the 'cuid' used by peer DOTS clients.
        peer to notify that the 'cuid' is already in use by another
+
      Triggers for such rewriting are out of scope.
        DOTS client. Upon receipt of that error code, a new 'cuid'
 
        MUST be generated by the DOTS peer (e.g., using [RFC4122]).
 
  
        Client-domain DOTS gateways MUST handle 'cuid' collision
+
      This is a mandatory Uri-Path parameter.
        directly and it is RECOMMENDED that 'cuid' collision is handled
 
        directly by server-domain DOTS gateways.
 
  
        DOTS gateways MAY rewrite the 'cuid' used by peer DOTS clients.
+
mid:  Identifier for the mitigation request represented with an
        Triggers for such rewriting are out of scope.
+
      integer.  This identifier MUST be unique for each mitigation
 +
      request bound to the DOTS client, i.e., the 'mid' parameter
 +
      value in the mitigation request needs to be unique (per 'cuid'
 +
      and DOTS server) relative to the 'mid' parameter values of
 +
      active mitigation requests conveyed from the DOTS client to the
 +
      DOTS server.
  
        This is a mandatory Uri-Path parameter.
+
      In order to handle out-of-order delivery of mitigation
 +
      requests, 'mid' values MUST increase monotonically.
  
  mid:  Identifier for the mitigation request represented with an
+
      If the 'mid' value has reached 3/4 of (2^(32) - 1) (i.e.,
        integer.  This identifier MUST be unique for each mitigation
+
      3221225471) and no attack is detected, the DOTS client MUST
        request bound to the DOTS client, i.e., the 'mid' parameter
+
      reset 'mid' to 0 to handle 'mid' rollover.  If the DOTS client
        value in the mitigation request needs to be unique (per 'cuid'
+
      maintains mitigation requests with preconfigured scopes, it
        and DOTS server) relative to the 'mid' parameter values of
+
      MUST recreate them with the 'mid' restarting at 0.
        active mitigation requests conveyed from the DOTS client to the
 
        DOTS server.
 
  
        In order to handle out-of-order delivery of mitigation
+
      This identifier MUST be generated by the DOTS client.
        requests, 'mid' values MUST increase monotonically.
 
  
        If the 'mid' value has reached 3/4 of (2^(32) - 1) (i.e.,
+
      This is a mandatory Uri-Path parameter.
        3221225471) and no attack is detected, the DOTS client MUST
 
        reset 'mid' to 0 to handle 'mid' rollover.  If the DOTS client
 
        maintains mitigation requests with preconfigured scopes, it
 
        MUST recreate them with the 'mid' restarting at 0.
 
  
        This identifier MUST be generated by the DOTS client.
+
'cuid' and 'mid' MUST NOT appear in the PUT request message body
 +
(Figure 6).  The schema in Figure 6 uses the types defined in
 +
Section 6.  Note that this figure (and other similar figures
 +
depicting a schema) are non-normative sketches of the structure of
 +
the message.
  
        This is a mandatory Uri-Path parameter.
+
  {
 +
    "ietf-dots-signal-channel:mitigation-scope": {
 +
      "scope": [
 +
        {
 +
          "target-prefix": [
 +
            "string"
 +
          ],
 +
          "target-port-range": [
 +
            {
 +
              "lower-port": number,
 +
              "upper-port": number
 +
            }
 +
          ],
 +
          "target-protocol": [
 +
            number
 +
          ],
 +
          "target-fqdn": [
 +
            "string"
 +
          ],
 +
          "target-uri": [
 +
            "string"
 +
          ],
 +
          "alias-name": [
 +
            "string"
 +
          ],
 +
          "lifetime": number,
 +
          "trigger-mitigation": true|false
 +
        }
 +
      ]
 +
    }
 +
  }
  
  'cuid' and 'mid' MUST NOT appear in the PUT request message body
+
    Figure 6: PUT to Convey DOTS Mitigation Requests (Message Body
  (Figure 6).  The schema in Figure 6 uses the types defined in
+
                              Schema)
  Section 6.  Note that this figure (and other similar figures
 
  depicting a schema) are non-normative sketches of the structure of
 
  the message.
 
  
    {
+
The parameters in the CBOR body (Figure 6) of the PUT request are
      "ietf-dots-signal-channel:mitigation-scope": {
+
described below:
        "scope": [
 
          {
 
            "target-prefix": [
 
                "string"
 
              ],
 
            "target-port-range": [
 
                {
 
                  "lower-port": number,
 
                  "upper-port": number
 
                }
 
              ],
 
              "target-protocol": [
 
                number
 
              ],
 
              "target-fqdn": [
 
                "string"
 
              ],
 
              "target-uri": [
 
                "string"
 
              ],
 
              "alias-name": [
 
                "string"
 
              ],
 
            "lifetime": number,
 
            "trigger-mitigation": true|false
 
          }
 
        ]
 
      }
 
    }
 
  
      Figure 6: PUT to Convey DOTS Mitigation Requests (Message Body
+
target-prefix: A list of prefixes identifying resources under
                                  Schema)
+
  attack.  Prefixes are represented using Classless Inter-Domain
 +
  Routing (CIDR) notation [[RFC4632]].
  
   The parameters in the CBOR body (Figure 6) of the PUT request are
+
   As a reminder, the prefix length must be less than or equal to 32
  described below:
+
  (or 128) for IPv4 (or IPv6).
  
   target-prefix: A list of prefixes identifying resources under
+
   The prefix list MUST NOT include broadcast, loopback, or multicast
      attackPrefixes are represented using Classless Inter-Domain
+
  addresses. These addresses are considered to be invalid values.
      Routing (CIDR) notation [RFC4632].
+
  In addition, the DOTS server MUST validate that target prefixes
 +
  are within the scope of the DOTS client domainOther validation
 +
  checks may be supported by DOTS servers.
  
      As a reminder, the prefix length must be less than or equal to 32
+
  This is an optional attribute.
      (or 128) for IPv4 (or IPv6).
 
  
      The prefix list MUST NOT include broadcast, loopback, or multicast
+
target-port-range:  A list of port numbers bound to resources under
      addresses.  These addresses are considered to be invalid values.
+
  attack.
      In addition, the DOTS server MUST validate that target prefixes
 
      are within the scope of the DOTS client domain.  Other validation
 
      checks may be supported by DOTS servers.
 
  
      This is an optional attribute.
+
  A port range is defined by two bounds, a lower port number
 +
  ('lower-port') and an upper port number ('upper-port').  When only
 +
  'lower-port' is present, it represents a single port number.
  
   target-port-range:  A list of port numbers bound to resources under
+
   For TCP, UDP, Stream Control Transmission Protocol (SCTP)
      attack.
+
  [[RFC4960]], or Datagram Congestion Control Protocol (DCCP)
 +
  [[RFC4340]], a range of ports can be, for example, 0-1023,
 +
  1024-65535, or 1024-49151.
  
      A port range is defined by two bounds, a lower port number
+
  This is an optional attribute.
      ('lower-port') and an upper port number ('upper-port').  When only
 
      'lower-port' is present, it represents a single port number.
 
  
      For TCP, UDP, Stream Control Transmission Protocol (SCTP)
+
target-protocol:  A list of protocols involved in an attack.  Values
      [RFC4960], or Datagram Congestion Control Protocol (DCCP)
+
  are taken from the IANA protocol registry [IANA-Proto].
      [RFC4340], a range of ports can be, for example, 0-1023,
 
      1024-65535, or 1024-49151.
 
  
      This is an optional attribute.
+
  If 'target-protocol' is not specified, then the request applies to
 +
  any protocol.
  
   target-protocol:  A list of protocols involved in an attack.  Values
+
   This is an optional attribute.
      are taken from the IANA protocol registry [IANA-Proto].
 
  
      If 'target-protocol' is not specified, then the request applies to
+
target-fqdn:  A list of Fully Qualified Domain Names (FQDNs)
      any protocol.
+
  identifying resources under attack [[RFC8499]].
  
      This is an optional attribute.
+
  How a name is passed to an underlying name resolution library is
 +
  implementation and deployment specific.  Nevertheless, once the
 +
  name is resolved into one or multiple IP addresses, DOTS servers
 +
  MUST apply the same validation checks as those for 'target-
 +
  prefix'.
  
   target-fqdn:  A list of Fully Qualified Domain Names (FQDNs)
+
   The use of FQDNs may be suboptimal because:
      identifying resources under attack [RFC8499].
 
  
      How a name is passed to an underlying name resolution library is
+
  *  It induces both an extra load and increased delays on the DOTS
      implementation and deployment specific.  Nevertheless, once the
+
       server to handle and manage DNS resolution requests.
      name is resolved into one or multiple IP addresses, DOTS servers
 
       MUST apply the same validation checks as those for 'target-
 
      prefix'.
 
  
       The use of FQDNs may be suboptimal because:
+
  *  It does not guarantee that the DOTS server will resolve a name
 +
       to the same IP addresses that the DOTS client does.
  
      *  It induces both an extra load and increased delays on the DOTS
+
  This is an optional attribute.
        server to handle and manage DNS resolution requests.
 
  
      * It does not guarantee that the DOTS server will resolve a name
+
target-uri: A list of URIs [[RFC3986]] identifying resources under
        to the same IP addresses that the DOTS client does.
+
  attack.
  
      This is an optional attribute.
+
  The same validation checks used for 'target-fqdn' MUST be followed
 +
  by DOTS servers to validate a target URI.
  
   target-uri:  A list of URIs [RFC3986] identifying resources under
+
   This is an optional attribute.
      attack.
 
  
      The same validation checks used for 'target-fqdn' MUST be followed
+
alias-name:  A list of aliases of resources for which the mitigation
      by DOTS servers to validate a target URI.
+
  is requested.  Aliases can be created using the DOTS data channel
 +
  (Section 6.1 of [[RFC8783]]), direct configuration, or other means.
  
      This is an optional attribute.
+
  An alias is used in subsequent signal channel exchanges to refer
 +
  more efficiently to the resources under attack.
  
   alias-name:  A list of aliases of resources for which the mitigation
+
   This is an optional attribute.
      is requested.  Aliases can be created using the DOTS data channel
 
      (Section 6.1 of [RFC8783]), direct configuration, or other means.
 
  
      An alias is used in subsequent signal channel exchanges to refer
+
lifetime:  Lifetime of the mitigation request in seconds.  The
      more efficiently to the resources under attack.
+
  RECOMMENDED lifetime of a mitigation request is 3600 seconds: this
 +
  value was chosen to be long enough so that refreshing is not
 +
  typically a burden on the DOTS client, while still making the
 +
  request expire in a timely manner when the client has unexpectedly
 +
  quit.  DOTS clients MUST include this parameter in their
 +
  mitigation requests.  Upon the expiry of this lifetime, and if the
 +
  request is not refreshed, the mitigation request is removed.  The
 +
  request can be refreshed by sending the same request again.
  
      This is an optional attribute.
+
  A lifetime of '0' in a mitigation request is an invalid value.
  
   lifetime:  Lifetime of the mitigation request in seconds.  The
+
   A lifetime of negative one (-1) indicates indefinite lifetime for
      RECOMMENDED lifetime of a mitigation request is 3600 seconds: this
+
  the mitigation request.  The DOTS server MAY refuse an indefinite
      value was chosen to be long enough so that refreshing is not
+
  lifetime, for policy reasons; the granted lifetime value is
      typically a burden on the DOTS client, while still making the
+
  returned in the response.  DOTS clients MUST be prepared to not be
      request expire in a timely manner when the client has unexpectedly
+
  granted mitigations with indefinite lifetimes.
      quit.  DOTS clients MUST include this parameter in their
 
      mitigation requests.  Upon the expiry of this lifetime, and if the
 
      request is not refreshed, the mitigation request is removed.  The
 
      request can be refreshed by sending the same request again.
 
  
      A lifetime of '0' in a mitigation request is an invalid value.
+
  The DOTS server MUST always indicate the actual lifetime in the
 +
  response and the remaining lifetime in status messages sent to the
 +
  DOTS client.
  
      A lifetime of negative one (-1) indicates indefinite lifetime for
+
  This is a mandatory attribute.
      the mitigation request.  The DOTS server MAY refuse an indefinite
 
      lifetime, for policy reasons; the granted lifetime value is
 
      returned in the response.  DOTS clients MUST be prepared to not be
 
      granted mitigations with indefinite lifetimes.
 
  
      The DOTS server MUST always indicate the actual lifetime in the
+
trigger-mitigation:  If the parameter value is set to 'false', DDoS
      response and the remaining lifetime in status messages sent to the
+
  mitigation will not be triggered for the mitigation request unless
      DOTS client.
+
  the DOTS signal channel session is lost.
  
      This is a mandatory attribute.
+
  If the DOTS client ceases to respond to heartbeat messages, the
 +
  DOTS server can detect that the DOTS signal channel session is
 +
  lost.  More details are discussed in Section 4.7.
  
   trigger-mitigation:  If the parameter value is set to 'false', DDoS
+
   The default value of the parameter is 'true' (that is, the
      mitigation will not be triggered for the mitigation request unless
+
  mitigation starts immediately).  If 'trigger-mitigation' is not
      the DOTS signal channel session is lost.
+
  present in a request, this is equivalent to receiving a request
 +
  with 'trigger-mitigation' set to 'true'.
  
      If the DOTS client ceases to respond to heartbeat messages, the
+
  This is an optional attribute.
      DOTS server can detect that the DOTS signal channel session is
 
      lost.  More details are discussed in Section 4.7.
 
  
      The default value of the parameter is 'true' (that is, the
+
In deployments where server-domain DOTS gateways are enabled,
      mitigation starts immediately)If 'trigger-mitigation' is not
+
identity information about the origin source client domain ('cdid')
      present in a request, this is equivalent to receiving a request
+
SHOULD be propagated to the DOTS server.  That information is meant
      with 'trigger-mitigation' set to 'true'.
+
to assist the DOTS server in enforcing some policies such as grouping
 +
DOTS clients that belong to the same DOTS domain, limiting the number
 +
of DOTS requests, and identifying the mitigation scopeThese
 +
policies can be enforced per client, per client domain, or both.
 +
Also, the identity information may be used for auditing and debugging
 +
purposes.
  
      This is an optional attribute.
+
Figure 7 shows an example of a request relayed by a server-domain
 +
DOTS gateway.
  
  In deployments where server-domain DOTS gateways are enabled,
+
  Header: PUT (Code=0.03)
  identity information about the origin source client domain ('cdid')
+
  Uri-Path: ".well-known"
  SHOULD be propagated to the DOTS server. That information is meant
+
  Uri-Path: "dots"
  to assist the DOTS server in enforcing some policies such as grouping
+
  Uri-Path: "mitigate"
  DOTS clients that belong to the same DOTS domain, limiting the number
+
  Uri-Path: "cdid=7eeaf349529eb55ed50113"
  of DOTS requests, and identifying the mitigation scope.  These
+
  Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
  policies can be enforced per client, per client domain, or both.
+
  Uri-Path: "mid=123"
  Also, the identity information may be used for auditing and debugging
+
  Content-Format: "application/dots+cbor"
  purposes.
 
  
  Figure 7 shows an example of a request relayed by a server-domain
+
  {
  DOTS gateway.
+
    ...
 +
  }
  
    Header: PUT (Code=0.03)
+
    Figure 7: PUT for DOTS Mitigation Request as Relayed by a DOTS
    Uri-Path: ".well-known"
+
                              Gateway
    Uri-Path: "dots"
 
    Uri-Path: "mitigate"
 
    Uri-Path: "cdid=7eeaf349529eb55ed50113"
 
    Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
 
    Uri-Path: "mid=123"
 
    Content-Format: "application/dots+cbor"
 
  
    {
+
A server-domain DOTS gateway SHOULD add the following Uri-Path
      ...
+
parameter:
    }
 
  
      Figure 7: PUT for DOTS Mitigation Request as Relayed by a DOTS
+
cdid: Stands for Client Domain Identifier.  The 'cdid' is conveyed
                                  Gateway
+
      by a server-domain DOTS gateway to propagate the source domain
 +
      identity from the gateway's client-facing side to the gateway's
 +
      server-facing side, and from the gateway's server-facing side
 +
      to the DOTS server. 'cdid' may be used by the final DOTS server
 +
      for policy enforcement purposes (e.g., enforce a quota on
 +
      filtering rules).  These policies are deployment specific.
  
  A server-domain DOTS gateway SHOULD add the following Uri-Path
+
      Server-domain DOTS gateways SHOULD support a configuration
  parameter:
+
      option to instruct whether 'cdid' parameter is to be inserted.
  
  cdid:  Stands for Client Domain Identifier.  The 'cdid' is conveyed
+
      In order to accommodate deployments that require enforcing per-
        by a server-domain DOTS gateway to propagate the source domain
+
      client policies, per-client domain policies, or a combination
        identity from the gateway's client-facing side to the gateway's
+
      thereof, server-domain DOTS gateways instructed to insert the
        server-facing side, and from the gateway's server-facing side
+
      'cdid' parameter MUST supply the SPKI hash of the DOTS client
        to the DOTS server. 'cdid' may be used by the final DOTS server
+
      X.509 certificate, the DOTS client raw public key, or the hash
        for policy enforcement purposes (e.g., enforce a quota on
+
      of the "PSK identity" in the 'cdid', following the same rules
        filtering rules).  These policies are deployment specific.
+
      for generating the hash conveyed in 'cuid', which is then used
 +
      by the ultimate DOTS server to determine the corresponding
 +
      client's domain.  The 'cdid' generated by a server-domain
 +
      gateway is likely to be the same as the 'cuid' except the case
 +
      in which the DOTS message was relayed by a client-domain DOTS
 +
      gateway or the 'cuid' was generated from a rogue DOTS client.
  
        Server-domain DOTS gateways SHOULD support a configuration
+
      If a DOTS client is provisioned, for example, with distinct
        option to instruct whether 'cdid' parameter is to be inserted.
+
      certificates as a function of the peer server-domain DOTS
 +
      gateway, distinct 'cdid' values may be supplied by a server-
 +
      domain DOTS gateway.  The ultimate DOTS server MUST treat those
 +
      'cdid' values as equivalent.
  
        In order to accommodate deployments that require enforcing per-
+
      The 'cdid' attribute MUST NOT be generated and included by DOTS
        client policies, per-client domain policies, or a combination
+
      clients.
        thereof, server-domain DOTS gateways instructed to insert the
 
        'cdid' parameter MUST supply the SPKI hash of the DOTS client
 
        X.509 certificate, the DOTS client raw public key, or the hash
 
        of the "PSK identity" in the 'cdid', following the same rules
 
        for generating the hash conveyed in 'cuid', which is then used
 
        by the ultimate DOTS server to determine the corresponding
 
        client's domain.  The 'cdid' generated by a server-domain
 
        gateway is likely to be the same as the 'cuid' except the case
 
        in which the DOTS message was relayed by a client-domain DOTS
 
        gateway or the 'cuid' was generated from a rogue DOTS client.
 
  
        If a DOTS client is provisioned, for example, with distinct
+
      DOTS servers MUST ignore 'cdid' attributes that are directly
        certificates as a function of the peer server-domain DOTS
+
      supplied by source DOTS clients or client-domain DOTS gateways.
        gateway, distinct 'cdid' values may be supplied by a server-
+
      This implies that first server-domain DOTS gateways MUST strip
        domain DOTS gatewayThe ultimate DOTS server MUST treat those
+
      'cdid' attributes supplied by DOTS clients.  DOTS servers
        'cdid' values as equivalent.
+
      SHOULD support a configuration parameter to identify DOTS
 +
      gateways that are trusted to supply 'cdid' attributes.
  
        The 'cdid' attribute MUST NOT be generated and included by DOTS
+
      Only single-valued 'cdid' are defined in this document.  That
        clients.
+
      is, only the first on-path server-domain DOTS gateway can
 +
      insert a 'cdid' value.  This specification does not allow
 +
      multiple server-domain DOTS gateways, whenever involved in the
 +
      path, to insert a 'cdid' value for each server-domain gateway.
  
        DOTS servers MUST ignore 'cdid' attributes that are directly
+
      This is an optional Uri-Path. When present, 'cdid' MUST be
        supplied by source DOTS clients or client-domain DOTS gateways.
+
      positioned before 'cuid'.
        This implies that first server-domain DOTS gateways MUST strip
 
        'cdid' attributes supplied by DOTS clients.  DOTS servers
 
        SHOULD support a configuration parameter to identify DOTS
 
        gateways that are trusted to supply 'cdid' attributes.
 
  
        Only single-valued 'cdid' are defined in this document.  That
+
A DOTS gateway SHOULD add the CoAP Hop-Limit option [[RFC8768]].
        is, only the first on-path server-domain DOTS gateway can
 
        insert a 'cdid' value.  This specification does not allow
 
        multiple server-domain DOTS gateways, whenever involved in the
 
        path, to insert a 'cdid' value for each server-domain gateway.
 
  
        This is an optional Uri-PathWhen present, 'cdid' MUST be
+
Because of the complexity of handling partial failure cases, this
        positioned before 'cuid'.
+
specification does not allow the inclusion of multiple mitigation
 +
requests in the same PUT requestConcretely, a DOTS client MUST NOT
 +
include multiple entries in the 'scope' array of the same PUT
 +
request.
  
  A DOTS gateway SHOULD add the CoAP Hop-Limit option [RFC8768].
+
FQDN and URI mitigation scopes may be thought of as a form of scope
 +
alias, in which the addresses associated with the domain name or URI
 +
(as resolved by the DOTS server) represent the scope of the
 +
mitigation.  Particularly, the IP addresses to which the host
 +
subcomponent of authority component of a URI resolves represent the
 +
'target-prefix', the URI scheme represents the 'target-protocol', the
 +
port subcomponent of authority component of a URI represents the
 +
'target-port-range'.  If the optional port information is not present
 +
in the authority component, the default port defined for the URI
 +
scheme represents the 'target-port'.
  
  Because of the complexity of handling partial failure cases, this
+
In the PUT request, at least one of the attributes 'target-prefix',
  specification does not allow the inclusion of multiple mitigation
+
'target-fqdn','target-uri', or 'alias-name' MUST be present.
  requests in the same PUT request.  Concretely, a DOTS client MUST NOT
 
  include multiple entries in the 'scope' array of the same PUT
 
  request.
 
  
  FQDN and URI mitigation scopes may be thought of as a form of scope
+
Attributes and Uri-Path parameters with empty values MUST NOT be
  alias, in which the addresses associated with the domain name or URI
+
present in a request as an empty value will render the entire request
  (as resolved by the DOTS server) represent the scope of the
+
invalid.
  mitigation.  Particularly, the IP addresses to which the host
 
  subcomponent of authority component of a URI resolves represent the
 
  'target-prefix', the URI scheme represents the 'target-protocol', the
 
  port subcomponent of authority component of a URI represents the
 
  'target-port-range'.  If the optional port information is not present
 
  in the authority component, the default port defined for the URI
 
  scheme represents the 'target-port'.
 
  
  In the PUT request, at least one of the attributes 'target-prefix',
+
Figure 8 shows a PUT request example to signal that servers
  'target-fqdn','target-uri', or 'alias-name' MUST be present.
+
2001:db8:6401::1 and 2001:db8:6401::2 are receiving attack traffic on
 +
TCP port numbers 80, 8080, and 443.  The presence of 'cdid' indicates
 +
that a server-domain DOTS gateway has modified the initial PUT
 +
request sent by the DOTS client.  Note that 'cdid' MUST NOT appear in
 +
the PUT request message body.
  
  Attributes and Uri-Path parameters with empty values MUST NOT be
+
  Header: PUT (Code=0.03)
  present in a request as an empty value will render the entire request
+
  Uri-Path: ".well-known"
  invalid.
+
  Uri-Path: "dots"
 +
  Uri-Path: "mitigate"
 +
  Uri-Path: "cdid=7eeaf349529eb55ed50113"
 +
  Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
 +
  Uri-Path: "mid=123"
 +
  Content-Format: "application/dots+cbor"
  
  Figure 8 shows a PUT request example to signal that servers
+
  {
  2001:db8:6401::1 and 2001:db8:6401::2 are receiving attack traffic on
+
    "ietf-dots-signal-channel:mitigation-scope": {
  TCP port numbers 80, 8080, and 443.  The presence of 'cdid' indicates
+
      "scope": [
  that a server-domain DOTS gateway has modified the initial PUT
+
        {
  request sent by the DOTS client.  Note that 'cdid' MUST NOT appear in
+
          "target-prefix": [
  the PUT request message body.
+
            "2001:db8:6401::1/128",
 
+
            "2001:db8:6401::2/128"
    Header: PUT (Code=0.03)
+
          ],
    Uri-Path: ".well-known"
+
          "target-port-range": [
    Uri-Path: "dots"
+
            {
    Uri-Path: "mitigate"
+
              "lower-port": 80
    Uri-Path: "cdid=7eeaf349529eb55ed50113"
+
            },
    Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
+
            {
    Uri-Path: "mid=123"
+
              "lower-port": 443
    Content-Format: "application/dots+cbor"
+
            },
 +
            {
 +
              "lower-port": 8080
 +
            }
 +
          ],
 +
          "target-protocol": [
 +
            6
 +
          ],
 +
          "lifetime": 3600
 +
        }
 +
      ]
 +
    }
 +
  }
  
    {
+
        Figure 8: PUT for DOTS Mitigation Request (An Example)
      "ietf-dots-signal-channel:mitigation-scope": {
 
        "scope": [
 
          {
 
            "target-prefix": [
 
                "2001:db8:6401::1/128",
 
                "2001:db8:6401::2/128"
 
              ],
 
            "target-port-range": [
 
              {
 
                "lower-port": 80
 
              },
 
              {
 
                "lower-port": 443
 
              },
 
              {
 
                  "lower-port": 8080
 
              }
 
              ],
 
              "target-protocol": [
 
                6
 
              ],
 
            "lifetime": 3600
 
          }
 
        ]
 
      }
 
    }
 
  
          Figure 8: PUT for DOTS Mitigation Request (An Example)
+
The corresponding CBOR encoding format for the payload is shown in
 +
Figure 9.
  
   The corresponding CBOR encoding format for the payload is shown in
+
   A1                                      # map(1)
  Figure 9.
+
      01                                  # unsigned(1)
 +
      A1                                  # map(1)
 +
        02                                # unsigned(2)
 +
        81                                # array(1)
 +
            A4                            # map(4)
 +
              06                          # unsigned(6)
 +
              82                          # array(2)
 +
                  74                      # text(20)
 +
                    323030313A6462383A363430313A3A312F313238
 +
                  74                      # text(20)
 +
                    323030313A6462383A363430313A3A322F313238
 +
              07                          # unsigned(7)
 +
              83                          # array(3)
 +
                  A1                      # map(1)
 +
                    08                    # unsigned(8)
 +
                    18 50                # unsigned(80)
 +
                  A1                      # map(1)
 +
                    08                    # unsigned(8)
 +
                    19 01BB              # unsigned(443)
 +
                  A1                      # map(1)
 +
                    08                    # unsigned(8)
 +
                    19 1F90              # unsigned(8080)
 +
              0A                          # unsigned(10)
 +
              81                          # array(1)
 +
                  06                      # unsigned(6)
 +
              0E                          # unsigned(14)
 +
              19 0E10                    # unsigned(3600)
  
      A1                                      # map(1)
+
          Figure 9: PUT for DOTS Mitigation Request (CBOR)
        01                                  # unsigned(1)
 
        A1                                  # map(1)
 
            02                                # unsigned(2)
 
            81                                # array(1)
 
              A4                            # map(4)
 
                  06                          # unsigned(6)
 
                  82                          # array(2)
 
                    74                      # text(20)
 
                        323030313A6462383A363430313A3A312F313238
 
                    74                      # text(20)
 
                        323030313A6462383A363430313A3A322F313238
 
                  07                          # unsigned(7)
 
                  83                          # array(3)
 
                    A1                      # map(1)
 
                        08                    # unsigned(8)
 
                        18 50                # unsigned(80)
 
                    A1                      # map(1)
 
                        08                    # unsigned(8)
 
                        19 01BB              # unsigned(443)
 
                    A1                      # map(1)
 
                        08                    # unsigned(8)
 
                        19 1F90              # unsigned(8080)
 
                  0A                          # unsigned(10)
 
                  81                          # array(1)
 
                    06                      # unsigned(6)
 
                  0E                          # unsigned(14)
 
                  19 0E10                    # unsigned(3600)
 
  
              Figure 9: PUT for DOTS Mitigation Request (CBOR)
+
In both DOTS signal and data channel sessions, the DOTS client MUST
 +
authenticate itself to the DOTS server (Section 8).  The DOTS server
 +
MAY use the algorithm presented in Section 7 of [[RFC7589]] to derive
 +
the DOTS client identity or username from the client certificate.
 +
The DOTS client identity allows the DOTS server to accept mitigation
 +
requests with scopes that the DOTS client is authorized to manage.
  
  In both DOTS signal and data channel sessions, the DOTS client MUST
+
The DOTS server couples the DOTS signal and data channel sessions
  authenticate itself to the DOTS server (Section 8).  The DOTS server
+
using the DOTS client identity and optionally the 'cdid' parameter
  MAY use the algorithm presented in Section 7 of [RFC7589] to derive
+
value, so the DOTS server can validate whether the aliases conveyed
  the DOTS client identity or username from the client certificate.
+
in the mitigation request were indeed created by the same DOTS client
  The DOTS client identity allows the DOTS server to accept mitigation
+
using the DOTS data channel session. If the aliases were not created
  requests with scopes that the DOTS client is authorized to manage.
+
by the DOTS client, the DOTS server MUST return 4.00 (Bad Request) in
 +
the response.
  
  The DOTS server couples the DOTS signal and data channel sessions
+
The DOTS server couples the DOTS signal channel sessions using the
  using the DOTS client identity and optionally the 'cdid' parameter
+
DOTS client identity and optionally the 'cdid' parameter value, and
  value, so the DOTS server can validate whether the aliases conveyed
+
the DOTS server uses 'mid' and 'cuid' Uri-Path parameter values to
  in the mitigation request were indeed created by the same DOTS client
+
detect duplicate mitigation requests.  If the mitigation request
  using the DOTS data channel session.  If the aliases were not created
+
contains the 'alias-name' and other parameters identifying the target
  by the DOTS client, the DOTS server MUST return 4.00 (Bad Request) in
+
resources (such as 'target-prefix', 'target-port-range', 'target-
  the response.
+
fqdn', or 'target-uri'), the DOTS server appends the parameter values
 +
in 'alias-name' with the corresponding parameter values in 'target-
 +
prefix', 'target-port-range', 'target-fqdn', or 'target-uri'.
  
  The DOTS server couples the DOTS signal channel sessions using the
+
The DOTS server indicates the result of processing the PUT request
  DOTS client identity and optionally the 'cdid' parameter value, and
+
using CoAP Response Codes.  CoAP 2.xx codes are success.  CoAP 4.xx
  the DOTS server uses 'mid' and 'cuid' Uri-Path parameter values to
+
codes are some sort of invalid requests (client errors).  COAP 5.xx
  detect duplicate mitigation requests.  If the mitigation request
+
codes are returned if the DOTS server is in an error state or is
  contains the 'alias-name' and other parameters identifying the target
+
currently unavailable to provide mitigation in response to the
  resources (such as 'target-prefix', 'target-port-range', 'target-
+
mitigation request from the DOTS client.
  fqdn', or 'target-uri'), the DOTS server appends the parameter values
 
  in 'alias-name' with the corresponding parameter values in 'target-
 
  prefix', 'target-port-range', 'target-fqdn', or 'target-uri'.
 
  
  The DOTS server indicates the result of processing the PUT request
+
Figure 10 shows an example response to a PUT request that is
  using CoAP Response Codes. CoAP 2.xx codes are success.  CoAP 4.xx
+
successfully processed by a DOTS server (i.e., CoAP 2.xx Response
  codes are some sort of invalid requests (client errors).  COAP 5.xx
+
Codes).  This version of the specification forbids 'cuid' and 'cdid'
  codes are returned if the DOTS server is in an error state or is
+
(if used) to be returned in a response message body.
  currently unavailable to provide mitigation in response to the
 
  mitigation request from the DOTS client.
 
  
  Figure 10 shows an example response to a PUT request that is
+
{
  successfully processed by a DOTS server (i.e., CoAP 2.xx Response
+
  "ietf-dots-signal-channel:mitigation-scope": {
  Codes).  This version of the specification forbids 'cuid' and 'cdid'
+
    "scope": [
  (if used) to be returned in a response message body.
+
        {
 
+
          "mid": 123,
  {
+
          "lifetime": 3600
    "ietf-dots-signal-channel:mitigation-scope": {
+
        }
        "scope": [
+
      ]
          {
 
            "mid": 123,
 
            "lifetime": 3600
 
          }
 
        ]
 
      }
 
 
   }
 
   }
 +
}
  
                      Figure 10: 2.xx Response Body
+
                    Figure 10: 2.xx Response Body
  
  If the request is missing a mandatory attribute, does not include
+
If the request is missing a mandatory attribute, does not include
  'cuid' or 'mid' Uri-Path options, includes multiple 'scope'
+
'cuid' or 'mid' Uri-Path options, includes multiple 'scope'
  parameters, or contains invalid or unknown parameters, the DOTS
+
parameters, or contains invalid or unknown parameters, the DOTS
  server MUST reply with 4.00 (Bad Request).  DOTS agents can safely
+
server MUST reply with 4.00 (Bad Request).  DOTS agents can safely
  ignore comprehension-optional parameters they don't understand
+
ignore comprehension-optional parameters they don't understand
  (Section 9.6.1.1).
+
(Section 9.6.1.1).
  
  A DOTS server that receives a mitigation request with a 'lifetime'
+
A DOTS server that receives a mitigation request with a 'lifetime'
  set to '0' MUST reply with a 4.00 (Bad Request).
+
set to '0' MUST reply with a 4.00 (Bad Request).
  
  If the DOTS server does not find the 'mid' parameter value conveyed
+
If the DOTS server does not find the 'mid' parameter value conveyed
  in the PUT request in its configuration data, it MAY accept the
+
in the PUT request in its configuration data, it MAY accept the
  mitigation request by sending back a 2.01 (Created) response to the
+
mitigation request by sending back a 2.01 (Created) response to the
  DOTS client; the DOTS server will consequently try to mitigate the
+
DOTS client; the DOTS server will consequently try to mitigate the
  attack.  A DOTS server could reject mitigation requests when it is
+
attack.  A DOTS server could reject mitigation requests when it is
  near capacity or needs to rate-limit a particular client, for
+
near capacity or needs to rate-limit a particular client, for
  example.
+
example.
  
  The relative order of two mitigation requests with the same 'trigger-
+
The relative order of two mitigation requests with the same 'trigger-
  mitigation' type from a DOTS client is determined by comparing their
+
mitigation' type from a DOTS client is determined by comparing their
  respective 'mid' values.  If two mitigation requests with the same
+
respective 'mid' values.  If two mitigation requests with the same
  'trigger-mitigation' type have overlapping mitigation scopes, the
+
'trigger-mitigation' type have overlapping mitigation scopes, the
  mitigation request with the highest numeric 'mid' value will override
+
mitigation request with the highest numeric 'mid' value will override
  the other mitigation request.  Two mitigation requests from a DOTS
+
the other mitigation request.  Two mitigation requests from a DOTS
  client have overlapping scopes if there is a common IP address, IP
+
client have overlapping scopes if there is a common IP address, IP
  prefix, FQDN, URI, or alias.  To avoid maintaining a long list of
+
prefix, FQDN, URI, or alias.  To avoid maintaining a long list of
  overlapping mitigation requests (i.e., requests with the same
+
overlapping mitigation requests (i.e., requests with the same
  'trigger-mitigation' type and overlapping scopes) from a DOTS client
+
'trigger-mitigation' type and overlapping scopes) from a DOTS client
  and to avoid error-prone provisioning of mitigation requests from a
+
and to avoid error-prone provisioning of mitigation requests from a
  DOTS client, the overlapped lower numeric 'mid' MUST be automatically
+
DOTS client, the overlapped lower numeric 'mid' MUST be automatically
  deleted and no longer available at the DOTS server.  For example, if
+
deleted and no longer available at the DOTS server.  For example, if
  the DOTS server receives a mitigation request that overlaps with an
+
the DOTS server receives a mitigation request that overlaps with an
  existing mitigation with a higher numeric 'mid', the DOTS server
+
existing mitigation with a higher numeric 'mid', the DOTS server
  rejects the request by returning 4.09 (Conflict) to the DOTS client.
+
rejects the request by returning 4.09 (Conflict) to the DOTS client.
  The response includes enough information for a DOTS client to
+
The response includes enough information for a DOTS client to
  recognize the source of the conflict as described below in the
+
recognize the source of the conflict as described below in the
  'conflict-information' subtree with only the relevant nodes listed:
+
'conflict-information' subtree with only the relevant nodes listed:
  
  conflict-information:  Indicates that a mitigation request is
+
conflict-information:  Indicates that a mitigation request is
      conflicting with another mitigation request.  This optional
+
  conflicting with another mitigation request.  This optional
      attribute has the following structure:
+
  attribute has the following structure:
  
      conflict-cause:  Indicates the cause of the conflict.  The
+
  conflict-cause:  Indicates the cause of the conflict.  The
        following values are defined:
+
      following values are defined:
  
        1:  Overlapping targets. 'conflict-scope' provides more details
+
      1:  Overlapping targets. 'conflict-scope' provides more details
            about the conflicting target clauses.
+
          about the conflicting target clauses.
  
      conflict-scope:  Characterizes the exact conflict scope.  It may
+
  conflict-scope:  Characterizes the exact conflict scope.  It may
        include a list of IP addresses, a list of prefixes, a list of
+
      include a list of IP addresses, a list of prefixes, a list of
        port numbers, a list of target protocols, a list of FQDNs, a
+
      port numbers, a list of target protocols, a list of FQDNs, a
        list of URIs, a list of aliases, or a 'mid'.
+
      list of URIs, a list of aliases, or a 'mid'.
  
  If the DOTS server receives a mitigation request that overlaps with
+
If the DOTS server receives a mitigation request that overlaps with
  an active mitigation request, but both have distinct 'trigger-
+
an active mitigation request, but both have distinct 'trigger-
  mitigation' types, the DOTS server SHOULD deactivate (absent explicit
+
mitigation' types, the DOTS server SHOULD deactivate (absent explicit
  policy/configuration otherwise) the mitigation request with 'trigger-
+
policy/configuration otherwise) the mitigation request with 'trigger-
  mitigation' set to 'false'.  Particularly, if the mitigation request
+
mitigation' set to 'false'.  Particularly, if the mitigation request
  with 'trigger-mitigation' set to 'false' is active, the DOTS server
+
with 'trigger-mitigation' set to 'false' is active, the DOTS server
  withdraws the mitigation request (i.e., status code is set to '7' as
+
withdraws the mitigation request (i.e., status code is set to '7' as
  defined in Table 3) and transitions the status of the mitigation
+
defined in Table 3) and transitions the status of the mitigation
  request to '8'.
+
request to '8'.
  
  Upon DOTS signal channel session loss with a peer DOTS client, the
+
Upon DOTS signal channel session loss with a peer DOTS client, the
  DOTS server SHOULD withdraw (absent explicit policy/configuration
+
DOTS server SHOULD withdraw (absent explicit policy/configuration
  otherwise) any active mitigation requests that overlap with
+
otherwise) any active mitigation requests that overlap with
  mitigation requests having 'trigger-mitigation' set to 'false' from
+
mitigation requests having 'trigger-mitigation' set to 'false' from
  that DOTS client, as the loss of the session implicitly activates
+
that DOTS client, as the loss of the session implicitly activates
  these preconfigured mitigation requests, and they take precedence.
+
these preconfigured mitigation requests, and they take precedence.
  Note that the active-but-terminating period is not observed for
+
Note that the active-but-terminating period is not observed for
  mitigations withdrawn at the initiative of the DOTS server.
+
mitigations withdrawn at the initiative of the DOTS server.
  
  DOTS clients may adopt various strategies for setting the scopes of
+
DOTS clients may adopt various strategies for setting the scopes of
  immediate and preconfigured mitigation requests to avoid potential
+
immediate and preconfigured mitigation requests to avoid potential
  conflicts.  For example, a DOTS client may tweak preconfigured scopes
+
conflicts.  For example, a DOTS client may tweak preconfigured scopes
  so that the scope of any overlapping immediate mitigation request
+
so that the scope of any overlapping immediate mitigation request
  will be a subset of the preconfigured scopes.  Also, if an immediate
+
will be a subset of the preconfigured scopes.  Also, if an immediate
  mitigation request overlaps with any of the preconfigured scopes, the
+
mitigation request overlaps with any of the preconfigured scopes, the
  DOTS client sets the scope of the overlapping immediate mitigation
+
DOTS client sets the scope of the overlapping immediate mitigation
  request to be a subset of the preconfigured scopes, so as to get a
+
request to be a subset of the preconfigured scopes, so as to get a
  broad mitigation when the DOTS signal channel collapses and to
+
broad mitigation when the DOTS signal channel collapses and to
  maximize the chance of recovery.
+
maximize the chance of recovery.
  
  If the request conflicts with an existing mitigation request from a
+
If the request conflicts with an existing mitigation request from a
  different DOTS client, the DOTS server may return 2.01 (Created) or
+
different DOTS client, the DOTS server may return 2.01 (Created) or
  4.09 (Conflict) to the requesting DOTS client.  If the DOTS server
+
4.09 (Conflict) to the requesting DOTS client.  If the DOTS server
  decides to maintain the new mitigation request, the DOTS server
+
decides to maintain the new mitigation request, the DOTS server
  returns 2.01 (Created) to the requesting DOTS client.  If the DOTS
+
returns 2.01 (Created) to the requesting DOTS client.  If the DOTS
  server decides to reject the new mitigation request, the DOTS server
+
server decides to reject the new mitigation request, the DOTS server
  returns 4.09 (Conflict) to the requesting DOTS client.  For both 2.01
+
returns 4.09 (Conflict) to the requesting DOTS client.  For both 2.01
  (Created) and 4.09 (Conflict) responses, the response includes enough
+
(Created) and 4.09 (Conflict) responses, the response includes enough
  information for a DOTS client to recognize the source of the conflict
+
information for a DOTS client to recognize the source of the conflict
  as described below:
+
as described below:
  
  conflict-information:  Indicates that a mitigation request is
+
conflict-information:  Indicates that a mitigation request is
      conflicting with another mitigation request(s) from other DOTS
+
  conflicting with another mitigation request(s) from other DOTS
      client(s).  This optional attribute has the following structure:
+
  client(s).  This optional attribute has the following structure:
  
      conflict-status:  Indicates the status of a conflicting mitigation
+
  conflict-status:  Indicates the status of a conflicting mitigation
        request.  The following values are defined:
+
      request.  The following values are defined:
  
        1:  DOTS server has detected conflicting mitigation requests
+
      1:  DOTS server has detected conflicting mitigation requests
            from different DOTS clients.  This mitigation request is
+
          from different DOTS clients.  This mitigation request is
            currently inactive until the conflicts are resolved.
+
          currently inactive until the conflicts are resolved.
            Another mitigation request is active.
+
          Another mitigation request is active.
  
        2:  DOTS server has detected conflicting mitigation requests
+
      2:  DOTS server has detected conflicting mitigation requests
            from different DOTS clients.  This mitigation request is
+
          from different DOTS clients.  This mitigation request is
            currently active.
+
          currently active.
  
        3:  DOTS server has detected conflicting mitigation requests
+
      3:  DOTS server has detected conflicting mitigation requests
            from different DOTS clients.  All conflicting mitigation
+
          from different DOTS clients.  All conflicting mitigation
            requests are inactive.
+
          requests are inactive.
  
      conflict-cause:  Indicates the cause of the conflict.  The
+
  conflict-cause:  Indicates the cause of the conflict.  The
        following values are defined:
+
      following values are defined:
  
        1:  Overlapping targets. 'conflict-scope' provides more details
+
      1:  Overlapping targets. 'conflict-scope' provides more details
            about the conflicting target clauses.
+
          about the conflicting target clauses.
  
        2:  Conflicts with an existing accept-list.  This code is
+
      2:  Conflicts with an existing accept-list.  This code is
            returned when the DDoS mitigation detects source addresses/
+
          returned when the DDoS mitigation detects source addresses/
            prefixes in the accept-listed ACLs are attacking the
+
          prefixes in the accept-listed ACLs are attacking the
            target.
+
          target.
  
        3:  CUID Collision.  This code is returned when a DOTS client
+
      3:  CUID Collision.  This code is returned when a DOTS client
            uses a 'cuid' that is already used by another DOTS client.
+
          uses a 'cuid' that is already used by another DOTS client.
            This code is an indication that the request has been
+
          This code is an indication that the request has been
            rejected and a new request with a new 'cuid' is to be re-
+
          rejected and a new request with a new 'cuid' is to be re-
            sent by the DOTS client (see the example shown in
+
          sent by the DOTS client (see the example shown in
            Figure 11).  Note that 'conflict-status', 'conflict-scope',
+
          Figure 11).  Note that 'conflict-status', 'conflict-scope',
            and 'retry-timer' MUST NOT be returned in the error
+
          and 'retry-timer' MUST NOT be returned in the error
            response.
+
          response.
  
      conflict-scope:  Characterizes the exact conflict scope.  It may
+
  conflict-scope:  Characterizes the exact conflict scope.  It may
        include a list of IP addresses, a list of prefixes, a list of
+
      include a list of IP addresses, a list of prefixes, a list of
        port numbers, a list of target protocols, a list of FQDNs, a
+
      port numbers, a list of target protocols, a list of FQDNs, a
        list of URIs, a list of aliases, or references to conflicting
+
      list of URIs, a list of aliases, or references to conflicting
        ACLs (by an 'acl-name', typically [RFC8783]).
+
      ACLs (by an 'acl-name', typically [[RFC8783]]).
  
      retry-timer:  Indicates, in seconds, the time after which the DOTS
+
  retry-timer:  Indicates, in seconds, the time after which the DOTS
        client may reissue the same request.  The DOTS server returns
+
      client may reissue the same request.  The DOTS server returns
        'retry-timer' only to DOTS client(s) for which a mitigation
+
      'retry-timer' only to DOTS client(s) for which a mitigation
        request is deactivated.  Any retransmission of the same
+
      request is deactivated.  Any retransmission of the same
        mitigation request before the expiry of this timer is likely to
+
      mitigation request before the expiry of this timer is likely to
        be rejected by the DOTS server for the same reasons.
+
      be rejected by the DOTS server for the same reasons.
  
        The 'retry-timer' SHOULD be equal to the lifetime of the active
+
      The 'retry-timer' SHOULD be equal to the lifetime of the active
        mitigation request resulting in the deactivation of the
+
      mitigation request resulting in the deactivation of the
        conflicting mitigation request.
+
      conflicting mitigation request.
  
        If the DOTS server decides to maintain a state for the
+
      If the DOTS server decides to maintain a state for the
        deactivated mitigation request, the DOTS server updates the
+
      deactivated mitigation request, the DOTS server updates the
        lifetime of the deactivated mitigation request to 'retry-timer
+
      lifetime of the deactivated mitigation request to 'retry-timer
        + 45 seconds' (that is, this mitigation request remains
+
      + 45 seconds' (that is, this mitigation request remains
        deactivated for the entire duration of 'retry-timer + 45
+
      deactivated for the entire duration of 'retry-timer + 45
        seconds') so that the DOTS client can refresh the deactivated
+
      seconds') so that the DOTS client can refresh the deactivated
        mitigation request after 'retry-timer' seconds, but before the
+
      mitigation request after 'retry-timer' seconds, but before the
        expiry of the lifetime, and check if the conflict is resolved.
+
      expiry of the lifetime, and check if the conflict is resolved.
  
    Header: PUT (Code=0.03)
+
  Header: PUT (Code=0.03)
    Uri-Path: ".well-known"
+
  Uri-Path: ".well-known"
    Uri-Path: "dots"
+
  Uri-Path: "dots"
    Uri-Path: "mitigate"
+
  Uri-Path: "mitigate"
    Uri-Path: "cuid=7eeaf349529eb55ed50113"
+
  Uri-Path: "cuid=7eeaf349529eb55ed50113"
    Uri-Path: "mid=12"
+
  Uri-Path: "mid=12"
  
    (1) Request with a conflicting 'cuid'
+
  (1) Request with a conflicting 'cuid'
  
    {
+
  {
      "ietf-dots-signal-channel:mitigation-scope": {
+
    "ietf-dots-signal-channel:mitigation-scope": {
          "scope": [
+
      "scope": [
            {
+
          {
              "conflict-information": {
+
            "conflict-information": {
                "conflict-cause": "cuid-collision"
+
              "conflict-cause": "cuid-collision"
                }
 
 
             }
 
             }
          ]
+
          }
         }
+
         ]
 
     }
 
     }
 +
  }
  
    (2) Message body of the 4.09 (Conflict) response
+
  (2) Message body of the 4.09 (Conflict) response
      from the DOTS server
+
    from the DOTS server
  
    Header: PUT (Code=0.03)
+
  Header: PUT (Code=0.03)
    Uri-Path: ".well-known"
+
  Uri-Path: ".well-known"
    Uri-Path: "dots"
+
  Uri-Path: "dots"
    Uri-Path: "mitigate"
+
  Uri-Path: "mitigate"
    Uri-Path: "cuid=f30d281ce6b64fc5a0b91e"
+
  Uri-Path: "cuid=f30d281ce6b64fc5a0b91e"
    Uri-Path: "mid=12"
+
  Uri-Path: "mid=12"
  
    (3) Request with a new 'cuid'
+
  (3) Request with a new 'cuid'
  
              Figure 11: Example of Generating a New 'cuid'
+
            Figure 11: Example of Generating a New 'cuid'
  
  As an active attack evolves, DOTS clients can adjust the scope of
+
As an active attack evolves, DOTS clients can adjust the scope of
  requested mitigation as necessary, by refining the scope of resources
+
requested mitigation as necessary, by refining the scope of resources
  requiring mitigation.  This can be achieved by sending a PUT request
+
requiring mitigation.  This can be achieved by sending a PUT request
  with a new 'mid' value that will override the existing one with
+
with a new 'mid' value that will override the existing one with
  overlapping mitigation scopes.
+
overlapping mitigation scopes.
  
  For a mitigation request to continue beyond the initial negotiated
+
For a mitigation request to continue beyond the initial negotiated
  lifetime, the DOTS client has to refresh the current mitigation
+
lifetime, the DOTS client has to refresh the current mitigation
  request by sending a new PUT request.  This PUT request MUST use the
+
request by sending a new PUT request.  This PUT request MUST use the
  same 'mid' value, and it MUST repeat all the other parameters as sent
+
same 'mid' value, and it MUST repeat all the other parameters as sent
  in the original mitigation request apart from a possible change to
+
in the original mitigation request apart from a possible change to
  the 'lifetime' parameter value.  In such a case, the DOTS server MAY
+
the 'lifetime' parameter value.  In such a case, the DOTS server MAY
  update the mitigation request, and a 2.04 (Changed) response is
+
update the mitigation request, and a 2.04 (Changed) response is
  returned to indicate a successful update of the mitigation request.
+
returned to indicate a successful update of the mitigation request.
  If this is not the case, the DOTS server MUST reject the request with
+
If this is not the case, the DOTS server MUST reject the request with
  a 4.00 (Bad Request).
+
a 4.00 (Bad Request).
  
4.4.2.  Retrieve Information Related to a Mitigation
+
==== Retrieve Information Related to a Mitigation ====
  
  A GET request is used by a DOTS client to retrieve information
+
A GET request is used by a DOTS client to retrieve information
  (including status) of DOTS mitigations from a DOTS server.
+
(including status) of DOTS mitigations from a DOTS server.
  
  'cuid' is a mandatory Uri-Path parameter for GET requests.
+
'cuid' is a mandatory Uri-Path parameter for GET requests.
  
  Uri-Path parameters with empty values MUST NOT be present in a
+
Uri-Path parameters with empty values MUST NOT be present in a
  request.
+
request.
  
  The same considerations for manipulating the 'cdid' parameter by
+
The same considerations for manipulating the 'cdid' parameter by
  server-domain DOTS gateways specified in Section 4.4.1 MUST be
+
server-domain DOTS gateways specified in Section 4.4.1 MUST be
  followed for GET requests.
+
followed for GET requests.
  
  The 'c' Uri-Query option is used to control selection of
+
The 'c' Uri-Query option is used to control selection of
  configuration and non-configuration data nodes.  Concretely, the 'c'
+
configuration and non-configuration data nodes.  Concretely, the 'c'
  (content) parameter and its permitted values defined in Table 2
+
(content) parameter and its permitted values defined in Table 2
  [COMI] can be used to retrieve non-configuration data (attack
+
[COMI] can be used to retrieve non-configuration data (attack
  mitigation status), configuration data, or both.  The DOTS server MAY
+
mitigation status), configuration data, or both.  The DOTS server MAY
  support this optional filtering capability.  It can safely ignore it
+
support this optional filtering capability.  It can safely ignore it
  if not supported.  If the DOTS client supports the optional filtering
+
if not supported.  If the DOTS client supports the optional filtering
  capability, it SHOULD use "c=n" query (to get back only the
+
capability, it SHOULD use "c=n" query (to get back only the
  dynamically changing data) or "c=c" query (to get back the static
+
dynamically changing data) or "c=c" query (to get back the static
  configuration values) when the DDoS attack is active to limit the
+
configuration values) when the DDoS attack is active to limit the
  size of the response.
+
size of the response.
  
      +-------+-----------------------------------------------------+
+
  +-------+-----------------------------------------------------+
      | Value | Description                                        |
+
  | Value | Description                                        |
      +=======+=====================================================+
+
  +=======+=====================================================+
      | c    | Return only configuration descendant data nodes    |
+
  | c    | Return only configuration descendant data nodes    |
      +-------+-----------------------------------------------------+
+
  +-------+-----------------------------------------------------+
      | n    | Return only non-configuration descendant data nodes |
+
  | n    | Return only non-configuration descendant data nodes |
      +-------+-----------------------------------------------------+
+
  +-------+-----------------------------------------------------+
      | a    | Return all descendant data nodes                    |
+
  | a    | Return all descendant data nodes                    |
      +-------+-----------------------------------------------------+
+
  +-------+-----------------------------------------------------+
  
              Table 2: Permitted Values of the 'c' Parameter
+
            Table 2: Permitted Values of the 'c' Parameter
  
  The DOTS client can use block-wise transfer [RFC7959] to get the list
+
The DOTS client can use block-wise transfer [[RFC7959]] to get the list
  of all its mitigations maintained by a DOTS server, it can send a
+
of all its mitigations maintained by a DOTS server, it can send a
  Block2 Option in a GET request with NUM = 0 to aid in limiting the
+
Block2 Option in a GET request with NUM = 0 to aid in limiting the
  size of the response.  If the representation of all the active
+
size of the response.  If the representation of all the active
  mitigation requests associated with the DOTS client does not fit
+
mitigation requests associated with the DOTS client does not fit
  within a single datagram, the DOTS server MUST use the Block2 Option
+
within a single datagram, the DOTS server MUST use the Block2 Option
  with NUM = 0 in the GET response.  The Size2 Option may be conveyed
+
with NUM = 0 in the GET response.  The Size2 Option may be conveyed
  in the response to indicate the total size of the resource
+
in the response to indicate the total size of the resource
  representation.  The DOTS client retrieves the rest of the
+
representation.  The DOTS client retrieves the rest of the
  representation by sending additional GET requests with Block2 Options
+
representation by sending additional GET requests with Block2 Options
  containing NUM values greater than zero.  The DOTS client MUST adhere
+
containing NUM values greater than zero.  The DOTS client MUST adhere
  to the block size preferences indicated by the DOTS server in the
+
to the block size preferences indicated by the DOTS server in the
  response.  If the DOTS server uses the Block2 Option in the GET
+
response.  If the DOTS server uses the Block2 Option in the GET
  response, and the response is for a dynamically changing resource
+
response, and the response is for a dynamically changing resource
  (e.g., "c=n" or "c=a" query), the DOTS server MUST include the ETag
+
(e.g., "c=n" or "c=a" query), the DOTS server MUST include the ETag
  Option in the response.  The DOTS client MUST include the same ETag
+
Option in the response.  The DOTS client MUST include the same ETag
  value in subsequent GET requests to retrieve the rest of the
+
value in subsequent GET requests to retrieve the rest of the
  representation.
+
representation.
  
  The following examples illustrate how a DOTS client retrieves active
+
The following examples illustrate how a DOTS client retrieves active
  mitigation requests from a DOTS server.  In particular:
+
mitigation requests from a DOTS server.  In particular:
  
  *  Figure 12 shows the example of a GET request to retrieve all DOTS
+
*  Figure 12 shows the example of a GET request to retrieve all DOTS
      mitigation requests signaled by a DOTS client.
+
  mitigation requests signaled by a DOTS client.
  
  *  Figure 13 shows the example of a GET request to retrieve a
+
*  Figure 13 shows the example of a GET request to retrieve a
      specific DOTS mitigation request signaled by a DOTS client.  The
+
  specific DOTS mitigation request signaled by a DOTS client.  The
      configuration data to be reported in the response is formatted in
+
  configuration data to be reported in the response is formatted in
      the same order as it was processed by the DOTS server in the
+
  the same order as it was processed by the DOTS server in the
      original mitigation request.
+
  original mitigation request.
  
  These two examples assume the default of "c=a"; that is, the DOTS
+
These two examples assume the default of "c=a"; that is, the DOTS
  client asks for all data to be reported by the DOTS server.
+
client asks for all data to be reported by the DOTS server.
  
    Header: GET (Code=0.01)
+
  Header: GET (Code=0.01)
    Uri-Path: ".well-known"
+
  Uri-Path: ".well-known"
    Uri-Path: "dots"
+
  Uri-Path: "dots"
    Uri-Path: "mitigate"
+
  Uri-Path: "mitigate"
    Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
+
  Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
    Observe: 0
+
  Observe: 0
  
          Figure 12: GET to Retrieve All DOTS Mitigation Requests
+
      Figure 12: GET to Retrieve All DOTS Mitigation Requests
  
    Header: GET (Code=0.01)
+
  Header: GET (Code=0.01)
    Uri-Path: ".well-known"
+
  Uri-Path: ".well-known"
    Uri-Path: "dots"
+
  Uri-Path: "dots"
    Uri-Path: "mitigate"
+
  Uri-Path: "mitigate"
    Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
+
  Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
    Uri-Path: "mid=12332"
+
  Uri-Path: "mid=12332"
    Observe: 0
+
  Observe: 0
  
      Figure 13: GET to Retrieve a Specific DOTS Mitigation Request
+
    Figure 13: GET to Retrieve a Specific DOTS Mitigation Request
  
  If the DOTS server does not find the 'mid' Uri-Path value conveyed in
+
If the DOTS server does not find the 'mid' Uri-Path value conveyed in
  the GET request in its configuration data for the requesting DOTS
+
the GET request in its configuration data for the requesting DOTS
  client, it MUST respond with a 4.04 (Not Found) error Response Code.
+
client, it MUST respond with a 4.04 (Not Found) error Response Code.
  Likewise, the same error MUST be returned as a response to a request
+
Likewise, the same error MUST be returned as a response to a request
  to retrieve all mitigation records (i.e., 'mid' Uri-Path is not
+
to retrieve all mitigation records (i.e., 'mid' Uri-Path is not
  defined) of a given DOTS client if the DOTS server does not find any
+
defined) of a given DOTS client if the DOTS server does not find any
  mitigation record for that DOTS client.  As a reminder, a DOTS client
+
mitigation record for that DOTS client.  As a reminder, a DOTS client
  is identified by its identity (e.g., client certificate, 'cuid') and
+
is identified by its identity (e.g., client certificate, 'cuid') and
  optionally the 'cdid'.
+
optionally the 'cdid'.
  
  Figure 14 shows a response example of all active mitigation requests
+
Figure 14 shows a response example of all active mitigation requests
  associated with the DOTS client as maintained by the DOTS server.
+
associated with the DOTS client as maintained by the DOTS server.
  The response indicates the mitigation status of each mitigation
+
The response indicates the mitigation status of each mitigation
  request.
+
request.
  
  {
+
{
    "ietf-dots-signal-channel:mitigation-scope": {
+
  "ietf-dots-signal-channel:mitigation-scope": {
      "scope": [
+
    "scope": [
        {
+
      {
          "mid": 12332,
+
        "mid": 12332,
          "mitigation-start": "1507818434",
+
        "mitigation-start": "1507818434",
          "target-prefix": [
+
        "target-prefix": [
                "2001:db8:6401::1/128",
+
            "2001:db8:6401::1/128",
                "2001:db8:6401::2/128"
+
            "2001:db8:6401::2/128"
          ],
+
        ],
          "target-protocol": [
+
        "target-protocol": [
            17
+
          17
          ],
+
        ],
          "lifetime": 1756,
+
        "lifetime": 1756,
          "status": "attack-successfully-mitigated",
+
        "status": "attack-successfully-mitigated",
          "bytes-dropped": "134334555",
+
        "bytes-dropped": "134334555",
          "bps-dropped": "43344",
+
        "bps-dropped": "43344",
          "pkts-dropped": "333334444",
+
        "pkts-dropped": "333334444",
          "pps-dropped": "432432"
+
        "pps-dropped": "432432"
        },
+
      },
        {
+
      {
          "mid": 12333,
+
        "mid": 12333,
          "mitigation-start": "1507818393",
+
        "mitigation-start": "1507818393",
          "target-prefix": [
+
        "target-prefix": [
                "2001:db8:6401::1/128",
+
            "2001:db8:6401::1/128",
                "2001:db8:6401::2/128"
+
            "2001:db8:6401::2/128"
          ],
+
        ],
          "target-protocol": [
+
        "target-protocol": [
            6
+
          6
          ],
+
        ],
          "lifetime": 1755,
+
        "lifetime": 1755,
          "status": "attack-stopped",
+
        "status": "attack-stopped",
          "bytes-dropped": "0",
+
        "bytes-dropped": "0",
          "bps-dropped": "0",
+
        "bps-dropped": "0",
          "pkts-dropped": "0",
+
        "pkts-dropped": "0",
          "pps-dropped": "0"
+
        "pps-dropped": "0"
        }
+
      }
      ]
+
    ]
    }
+
  }
  }
+
}
  
                Figure 14: Response Body to a GET Request
+
              Figure 14: Response Body to a GET Request
  
  The mitigation status parameters are described below:
+
The mitigation status parameters are described below:
  
  mitigation-start:  Mitigation start time is expressed in seconds
+
mitigation-start:  Mitigation start time is expressed in seconds
      relative to 1970-01-01T00:00Z in UTC time (Section 2.4.1 of
+
  relative to 1970-01-01T00:00Z in UTC time (Section 2.4.1 of
      [RFC7049]).  The CBOR encoding is modified so that the leading tag
+
  [[RFC7049]]).  The CBOR encoding is modified so that the leading tag
      1 (epoch-based date/time) MUST be omitted.
+
  1 (epoch-based date/time) MUST be omitted.
  
      This is a mandatory attribute when an attack mitigation is active.
+
  This is a mandatory attribute when an attack mitigation is active.
      Particularly, 'mitigation-start' is not returned for a mitigation
+
  Particularly, 'mitigation-start' is not returned for a mitigation
      with 'status' code set to 8.
+
  with 'status' code set to 8.
  
  lifetime:  The remaining lifetime of the mitigation request, in
+
lifetime:  The remaining lifetime of the mitigation request, in
      seconds.
+
  seconds.
  
      This is a mandatory attribute.
+
  This is a mandatory attribute.
  
  status:  Status of attack mitigation.  The various possible values of
+
status:  Status of attack mitigation.  The various possible values of
      'status' parameter are explained in Table 3.
+
  'status' parameter are explained in Table 3.
  
      This is a mandatory attribute.
+
  This is a mandatory attribute.
  
  bytes-dropped:  The total dropped byte count for the mitigation
+
bytes-dropped:  The total dropped byte count for the mitigation
      request since the attack mitigation was triggered.  The count
+
  request since the attack mitigation was triggered.  The count
      wraps around when it reaches the maximum value of unsigned
+
  wraps around when it reaches the maximum value of unsigned
      integer64.
+
  integer64.
  
      This is an optional attribute.
+
  This is an optional attribute.
  
  bps-dropped:  The average number of dropped bytes per second for the
+
bps-dropped:  The average number of dropped bytes per second for the
      mitigation request since the attack mitigation was triggered.
+
  mitigation request since the attack mitigation was triggered.
      This average SHOULD be over five-minute intervals (that is,
+
  This average SHOULD be over five-minute intervals (that is,
      measuring bytes into five-minute buckets and then averaging these
+
  measuring bytes into five-minute buckets and then averaging these
      buckets over the time since the mitigation was triggered).
+
  buckets over the time since the mitigation was triggered).
  
      This is an optional attribute.
+
  This is an optional attribute.
  
  pkts-dropped:  The total number of dropped packet count for the
+
pkts-dropped:  The total number of dropped packet count for the
      mitigation request since the attack mitigation was triggered.  The
+
  mitigation request since the attack mitigation was triggered.  The
      count wraps around when it reaches the maximum value of unsigned
+
  count wraps around when it reaches the maximum value of unsigned
      integer64.
+
  integer64.
  
      This is an optional attribute.
+
  This is an optional attribute.
  
  pps-dropped:  The average number of dropped packets per second for
+
pps-dropped:  The average number of dropped packets per second for
      the mitigation request since the attack mitigation was triggered.
+
  the mitigation request since the attack mitigation was triggered.
      This average SHOULD be over five-minute intervals (that is,
+
  This average SHOULD be over five-minute intervals (that is,
      measuring packets into five-minute buckets and then averaging
+
  measuring packets into five-minute buckets and then averaging
      these buckets over the time since the mitigation was triggered).
+
  these buckets over the time since the mitigation was triggered).
  
      This is an optional attribute.
+
  This is an optional attribute.
  
    +-----------+----------------------------------------------------+
+
+-----------+----------------------------------------------------+
    | Parameter | Description                                        |
+
| Parameter | Description                                        |
    |    Value |                                                    |
+
|    Value |                                                    |
    +===========+====================================================+
+
+===========+====================================================+
    |        1 | Attack mitigation setup is in progress (e.g.,      |
+
|        1 | Attack mitigation setup is in progress (e.g.,      |
    |          | changing the network path to redirect the inbound  |
+
|          | changing the network path to redirect the inbound  |
    |          | traffic to a DOTS mitigator).                      |
+
|          | traffic to a DOTS mitigator).                      |
    +-----------+----------------------------------------------------+
+
+-----------+----------------------------------------------------+
    |        2 | Attack is being successfully mitigated (e.g.,      |
+
|        2 | Attack is being successfully mitigated (e.g.,      |
    |          | traffic is redirected to a DDoS mitigator and      |
+
|          | traffic is redirected to a DDoS mitigator and      |
    |          | attack traffic is dropped).                        |
+
|          | attack traffic is dropped).                        |
    +-----------+----------------------------------------------------+
+
+-----------+----------------------------------------------------+
    |        3 | Attack has stopped and the DOTS client can        |
+
|        3 | Attack has stopped and the DOTS client can        |
    |          | withdraw the mitigation request.  This status code |
+
|          | withdraw the mitigation request.  This status code |
    |          | will be transmitted for immediate mitigation      |
+
|          | will be transmitted for immediate mitigation      |
    |          | requests till the mitigation is withdrawn or the  |
+
|          | requests till the mitigation is withdrawn or the  |
    |          | lifetime expires.  For mitigation requests with    |
+
|          | lifetime expires.  For mitigation requests with    |
    |          | preconfigured scopes (i.e., 'trigger-mitigation'  |
+
|          | preconfigured scopes (i.e., 'trigger-mitigation'  |
    |          | set to 'false'), this status code will be          |
+
|          | set to 'false'), this status code will be          |
    |          | transmitted four times and then transition to "8". |
+
|          | transmitted four times and then transition to "8". |
    +-----------+----------------------------------------------------+
+
+-----------+----------------------------------------------------+
    |        4 | Attack has exceeded the mitigation provider        |
+
|        4 | Attack has exceeded the mitigation provider        |
    |          | capability.                                        |
+
|          | capability.                                        |
    +-----------+----------------------------------------------------+
+
+-----------+----------------------------------------------------+
    |        5 | DOTS client has withdrawn the mitigation request  |
+
|        5 | DOTS client has withdrawn the mitigation request  |
    |          | and the mitigation is active but terminating.      |
+
|          | and the mitigation is active but terminating.      |
    +-----------+----------------------------------------------------+
+
+-----------+----------------------------------------------------+
    |        6 | Attack mitigation is now terminated.              |
+
|        6 | Attack mitigation is now terminated.              |
    +-----------+----------------------------------------------------+
+
+-----------+----------------------------------------------------+
    |        7 | Attack mitigation is withdrawn (by the DOTS        |
+
|        7 | Attack mitigation is withdrawn (by the DOTS        |
    |          | server).  If a mitigation request with 'trigger-  |
+
|          | server).  If a mitigation request with 'trigger-  |
    |          | mitigation' set to 'false' is withdrawn because it |
+
|          | mitigation' set to 'false' is withdrawn because it |
    |          | overlaps with an immediate mitigation request,    |
+
|          | overlaps with an immediate mitigation request,    |
    |          | this status code will be transmitted four times    |
+
|          | this status code will be transmitted four times    |
    |          | and then transition to "8" for the mitigation      |
+
|          | and then transition to "8" for the mitigation      |
    |          | request with preconfigured scopes.                |
+
|          | request with preconfigured scopes.                |
    +-----------+----------------------------------------------------+
+
+-----------+----------------------------------------------------+
    |        8 | Attack mitigation will be triggered for the        |
+
|        8 | Attack mitigation will be triggered for the        |
    |          | mitigation request only when the DOTS signal      |
+
|          | mitigation request only when the DOTS signal      |
    |          | channel session is lost.                          |
+
|          | channel session is lost.                          |
    +-----------+----------------------------------------------------+
+
+-----------+----------------------------------------------------+
  
                  Table 3: Values of 'status' Parameter
+
              Table 3: Values of 'status' Parameter
  
4.4.2.1.  DOTS Servers Sending Mitigation Status
+
===== DOTS Servers Sending Mitigation Status =====
  
  The Observe Option defined in [RFC7641] extends the CoAP core
+
The Observe Option defined in [[RFC7641]] extends the CoAP core
  protocol with a mechanism for a CoAP client to "observe" a resource
+
protocol with a mechanism for a CoAP client to "observe" a resource
  on a CoAP server: the client retrieves a representation of the
+
on a CoAP server: the client retrieves a representation of the
  resource and requests this representation be updated by the server as
+
resource and requests this representation be updated by the server as
  long as the client is interested in the resource.  DOTS
+
long as the client is interested in the resource.  DOTS
  implementations MUST use the Observe Option for both 'mitigate' and
+
implementations MUST use the Observe Option for both 'mitigate' and
  'config' (Section 4.2).
+
'config' (Section 4.2).
  
  A DOTS client conveys the Observe Option set to '0' in the GET
+
A DOTS client conveys the Observe Option set to '0' in the GET
  request to receive asynchronous notifications of attack mitigation
+
request to receive asynchronous notifications of attack mitigation
  status from the DOTS server.
+
status from the DOTS server.
  
  Unidirectional mitigation notifications within the bidirectional
+
Unidirectional mitigation notifications within the bidirectional
  signal channel enables asynchronous notifications between the agents.
+
signal channel enables asynchronous notifications between the agents.
  [RFC7641] indicates that (1) a notification can be sent in a
+
[[RFC7641]] indicates that (1) a notification can be sent in a
  Confirmable or a Non-confirmable message, and (2) the message type
+
Confirmable or a Non-confirmable message, and (2) the message type
  used is typically application dependent and may be determined by the
+
used is typically application dependent and may be determined by the
  server for each notification individually.  For the DOTS server
+
server for each notification individually.  For the DOTS server
  application, the message type MUST always be set to Non-confirmable
+
application, the message type MUST always be set to Non-confirmable
  even if the underlying COAP library elects a notification to be sent
+
even if the underlying COAP library elects a notification to be sent
  in a Confirmable message.  This overrides the behavior defined in
+
in a Confirmable message.  This overrides the behavior defined in
  Section 4.5 of [RFC7641] to send a Confirmable message instead of a
+
Section 4.5 of [[RFC7641]] to send a Confirmable message instead of a
  Non-confirmable message at least every 24 hours for the following
+
Non-confirmable message at least every 24 hours for the following
  reasons: First, the DOTS signal channel uses a heartbeat mechanism to
+
reasons: First, the DOTS signal channel uses a heartbeat mechanism to
  determine if the DOTS client is alive.  Second, Confirmable messages
+
determine if the DOTS client is alive.  Second, Confirmable messages
  are not suitable during an attack.
+
are not suitable during an attack.
  
  Due to the higher likelihood of packet loss during a DDoS attack, the
+
Due to the higher likelihood of packet loss during a DDoS attack, the
  DOTS server periodically sends attack mitigation status to the DOTS
+
DOTS server periodically sends attack mitigation status to the DOTS
  client and also notifies the DOTS client whenever the status of the
+
client and also notifies the DOTS client whenever the status of the
  attack mitigation changes.  If the DOTS server cannot maintain an RTT
+
attack mitigation changes.  If the DOTS server cannot maintain an RTT
  estimate, it MUST NOT send more than one asynchronous notification
+
estimate, it MUST NOT send more than one asynchronous notification
  every 3 seconds, and SHOULD use an even less aggressive rate whenever
+
every 3 seconds, and SHOULD use an even less aggressive rate whenever
  possible (case 2 in Section 3.1.3 of [RFC8085]).
+
possible (case 2 in Section 3.1.3 of [[RFC8085]]).
  
  When conflicting requests are detected, the DOTS server enforces the
+
When conflicting requests are detected, the DOTS server enforces the
  corresponding policy (e.g., accept all requests, reject all requests,
+
corresponding policy (e.g., accept all requests, reject all requests,
  accept only one request but reject all the others, etc.).  It is
+
accept only one request but reject all the others, etc.).  It is
  assumed that this policy is supplied by the DOTS server administrator
+
assumed that this policy is supplied by the DOTS server administrator
  or that it is a default behavior of the DOTS server implementation.
+
or that it is a default behavior of the DOTS server implementation.
  Then, the DOTS server sends a notification message(s) to the DOTS
+
Then, the DOTS server sends a notification message(s) to the DOTS
  client(s) at the origin of the conflict (refer to the conflict
+
client(s) at the origin of the conflict (refer to the conflict
  parameters defined in Section 4.4.1).  A conflict notification
+
parameters defined in Section 4.4.1).  A conflict notification
  message includes information about the conflict cause, scope, and the
+
message includes information about the conflict cause, scope, and the
  status of the mitigation request(s).  For example:
+
status of the mitigation request(s).  For example:
  
  *  A notification message with 'status' code set to '7 (Attack
+
*  A notification message with 'status' code set to '7 (Attack
      mitigation is withdrawn)' and 'conflict-status' set to '1' is sent
+
  mitigation is withdrawn)' and 'conflict-status' set to '1' is sent
      to a DOTS client to indicate that an active mitigation request is
+
  to a DOTS client to indicate that an active mitigation request is
      deactivated because a conflict is detected.
+
  deactivated because a conflict is detected.
  
  *  A notification message with 'status' code set to '1 (Attack
+
*  A notification message with 'status' code set to '1 (Attack
      mitigation is in progress)' and 'conflict-status' set to '2' is
+
  mitigation is in progress)' and 'conflict-status' set to '2' is
      sent to a DOTS client to indicate that this mitigation request is
+
  sent to a DOTS client to indicate that this mitigation request is
      in progress, but a conflict is detected.
+
  in progress, but a conflict is detected.
  
  Upon receipt of a conflict notification message indicating that a
+
Upon receipt of a conflict notification message indicating that a
  mitigation request is deactivated because of a conflict, a DOTS
+
mitigation request is deactivated because of a conflict, a DOTS
  client MUST NOT resend the same mitigation request before the expiry
+
client MUST NOT resend the same mitigation request before the expiry
  of 'retry-timer'.  It is also recommended that DOTS clients support
+
of 'retry-timer'.  It is also recommended that DOTS clients support
  the means to alert administrators about mitigation conflicts.
+
the means to alert administrators about mitigation conflicts.
  
  A DOTS client that is no longer interested in receiving notifications
+
A DOTS client that is no longer interested in receiving notifications
  from the DOTS server can simply "forget" the observation.  When the
+
from the DOTS server can simply "forget" the observation.  When the
  DOTS server sends the next notification, the DOTS client will not
+
DOTS server sends the next notification, the DOTS client will not
  recognize the token in the message and, thus, will return a Reset
+
recognize the token in the message and, thus, will return a Reset
  message.  This causes the DOTS server to remove the associated entry.
+
message.  This causes the DOTS server to remove the associated entry.
  Alternatively, the DOTS client can explicitly de-register itself by
+
Alternatively, the DOTS client can explicitly de-register itself by
  issuing a GET request that has the Token field set to the token of
+
issuing a GET request that has the Token field set to the token of
  the observation to be canceled and includes an Observe Option with
+
the observation to be canceled and includes an Observe Option with
  the value set to '1' (de-register).  The latter is more deterministic
+
the value set to '1' (de-register).  The latter is more deterministic
  and, thus, is RECOMMENDED.
+
and, thus, is RECOMMENDED.
  
  Figure 15 shows an example of a DOTS client requesting a DOTS server
+
Figure 15 shows an example of a DOTS client requesting a DOTS server
  to send notifications related to a mitigation request.  Note that for
+
to send notifications related to a mitigation request.  Note that for
  mitigations with preconfigured scopes (i.e., 'trigger-mitigation' set
+
mitigations with preconfigured scopes (i.e., 'trigger-mitigation' set
  to 'false'), the state will need to transition from 3 (attack-
+
to 'false'), the state will need to transition from 3 (attack-
  stopped) to 8 (attack-mitigation-signal-loss).
+
stopped) to 8 (attack-mitigation-signal-loss).
  
  +-----------+                              +-----------+
+
+-----------+                              +-----------+
  |DOTS Client|                              |DOTS Server|
+
|DOTS Client|                              |DOTS Server|
  +-----------+                              +-----------+
+
+-----------+                              +-----------+
        |                                          |
+
      |                                          |
        |  GET /<mid>                              |
+
      |  GET /<mid>                              |
        |  Token: 0x4a                            | Registration
+
      |  Token: 0x4a                            | Registration
        |  Observe: 0                              |
+
      |  Observe: 0                              |
        +----------------------------------------->|
+
      +----------------------------------------->|
        |                                          |
+
      |                                          |
        |  2.05 Content                            |
+
      |  2.05 Content                            |
        |  Token: 0x4a                            | Notification of
+
      |  Token: 0x4a                            | Notification of
        |  Observe: 12                            | the current state
+
      |  Observe: 12                            | the current state
        |  status: "attack-mitigation-in-progress" |
+
      |  status: "attack-mitigation-in-progress" |
        |<-----------------------------------------+
+
      |<-----------------------------------------+
        |                                          |
+
      |                                          |
        |  2.05 Content                            |
+
      |  2.05 Content                            |
        |  Token: 0x4a                            | Notification upon
+
      |  Token: 0x4a                            | Notification upon
        |  Observe: 44                            | a state change
+
      |  Observe: 44                            | a state change
        |  status: "attack-successfully-mitigated" |
+
      |  status: "attack-successfully-mitigated" |
        |<-----------------------------------------+
+
      |<-----------------------------------------+
        |                                          |
+
      |                                          |
        |  2.05 Content                            |
+
      |  2.05 Content                            |
        |  Token: 0x4a                            | Notification upon
+
      |  Token: 0x4a                            | Notification upon
        |  Observe: 60                            | a state change
+
      |  Observe: 60                            | a state change
        |  status: "attack-stopped"                |
+
      |  status: "attack-stopped"                |
        |<-----------------------------------------+
+
      |<-----------------------------------------+
        |                                          |
+
      |                                          |
                            ...
+
                        ...
  
            Figure 15: Notifications of Attack Mitigation Status
+
        Figure 15: Notifications of Attack Mitigation Status
  
4.4.2.2.  DOTS Clients Polling for Mitigation Status
+
===== DOTS Clients Polling for Mitigation Status =====
  
  The DOTS client can send the GET request at frequent intervals
+
The DOTS client can send the GET request at frequent intervals
  without the Observe Option to retrieve the configuration data of the
+
without the Observe Option to retrieve the configuration data of the
  mitigation request and non-configuration data (i.e., the attack
+
mitigation request and non-configuration data (i.e., the attack
  status).  DOTS clients MAY be configured with a policy indicating the
+
status).  DOTS clients MAY be configured with a policy indicating the
  frequency of polling DOTS servers to get the mitigation status.  This
+
frequency of polling DOTS servers to get the mitigation status.  This
  frequency MUST NOT be more than one UDP datagram per RTT as discussed
+
frequency MUST NOT be more than one UDP datagram per RTT as discussed
  in Section 3.1.3 of [RFC8085].
+
in Section 3.1.3 of [[RFC8085]].
  
  If the DOTS server has been able to mitigate the attack and the
+
If the DOTS server has been able to mitigate the attack and the
  attack has stopped, the DOTS server indicates as such in the status.
+
attack has stopped, the DOTS server indicates as such in the status.
  In such case, the DOTS client recalls the mitigation request by
+
In such case, the DOTS client recalls the mitigation request by
  issuing a DELETE request for this mitigation request (Section 4.4.4).
+
issuing a DELETE request for this mitigation request (Section 4.4.4).
  
  A DOTS client SHOULD react to the status of the attack per the
+
A DOTS client SHOULD react to the status of the attack per the
  information sent by the DOTS server rather than performing its own
+
information sent by the DOTS server rather than performing its own
  detection that the attack has been mitigated.  This ensures that the
+
detection that the attack has been mitigated.  This ensures that the
  DOTS client does not recall a mitigation request prematurely because
+
DOTS client does not recall a mitigation request prematurely because
  it is possible that the DOTS client does not sense the DDoS attack on
+
it is possible that the DOTS client does not sense the DDoS attack on
  its resources, but the DOTS server could be actively mitigating the
+
its resources, but the DOTS server could be actively mitigating the
  attack because the attack is not completely averted.
+
attack because the attack is not completely averted.
  
4.4.3.  Efficacy Update from DOTS Clients
+
==== Efficacy Update from DOTS Clients ====
  
  While DDoS mitigation is in progress, due to the likelihood of packet
+
While DDoS mitigation is in progress, due to the likelihood of packet
  loss, a DOTS client MAY periodically transmit DOTS mitigation
+
loss, a DOTS client MAY periodically transmit DOTS mitigation
  efficacy updates to the relevant DOTS server.  A PUT request is used
+
efficacy updates to the relevant DOTS server.  A PUT request is used
  to convey the mitigation efficacy update to the DOTS server.  This
+
to convey the mitigation efficacy update to the DOTS server.  This
  PUT request is treated as a refresh of the current mitigation.
+
PUT request is treated as a refresh of the current mitigation.
  
  The PUT request used for the efficacy update MUST include all the
+
The PUT request used for the efficacy update MUST include all the
  parameters used in the PUT request to carry the DOTS mitigation
+
parameters used in the PUT request to carry the DOTS mitigation
  request (Section 4.4.1) unchanged apart from the 'lifetime' parameter
+
request (Section 4.4.1) unchanged apart from the 'lifetime' parameter
  value.  If this is not the case, the DOTS server MUST reject the
+
value.  If this is not the case, the DOTS server MUST reject the
  request with a 4.00 (Bad Request).
+
request with a 4.00 (Bad Request).
  
  The If-Match Option (Section 5.10.8.1 of [RFC7252]) with an empty
+
The If-Match Option (Section 5.10.8.1 of [[RFC7252]]) with an empty
  value is used to make the PUT request conditional on the current
+
value is used to make the PUT request conditional on the current
  existence of the mitigation request.  If UDP is used as transport,
+
existence of the mitigation request.  If UDP is used as transport,
  CoAP requests may arrive out of order.  For example, the DOTS client
+
CoAP requests may arrive out of order.  For example, the DOTS client
  may send a PUT request to convey an efficacy update to the DOTS
+
may send a PUT request to convey an efficacy update to the DOTS
  server followed by a DELETE request to withdraw the mitigation
+
server followed by a DELETE request to withdraw the mitigation
  request, but the DELETE request arrives at the DOTS server before the
+
request, but the DELETE request arrives at the DOTS server before the
  PUT request.  To handle out-of-order delivery of requests, if an If-
+
PUT request.  To handle out-of-order delivery of requests, if an If-
  Match Option is present in the PUT request and the 'mid' in the
+
Match Option is present in the PUT request and the 'mid' in the
  request matches a mitigation request from that DOTS client, the
+
request matches a mitigation request from that DOTS client, the
  request is processed by the DOTS server.  If no match is found, the
+
request is processed by the DOTS server.  If no match is found, the
  PUT request is silently ignored by the DOTS server.
+
PUT request is silently ignored by the DOTS server.
  
  An example of an efficacy update message, which includes an If-Match
+
An example of an efficacy update message, which includes an If-Match
  Option with an empty value, is depicted in Figure 16.
+
Option with an empty value, is depicted in Figure 16.
  
      Header: PUT (Code=0.03)
+
  Header: PUT (Code=0.03)
      Uri-Path: ".well-known"
+
  Uri-Path: ".well-known"
      Uri-Path: "dots"
+
  Uri-Path: "dots"
      Uri-Path: "mitigate"
+
  Uri-Path: "mitigate"
      Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
+
  Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
      Uri-Path: "mid=123"
+
  Uri-Path: "mid=123"
      If-Match:
+
  If-Match:
      Content-Format: "application/dots+cbor"
+
  Content-Format: "application/dots+cbor"
  
      {
+
  {
      "ietf-dots-signal-channel:mitigation-scope": {
+
    "ietf-dots-signal-channel:mitigation-scope": {
        "scope": [
+
      "scope": [
          {
+
        {
            "target-prefix": [
+
          "target-prefix": [
                "2001:db8:6401::1/128",
+
            "2001:db8:6401::1/128",
                "2001:db8:6401::2/128"
+
            "2001:db8:6401::2/128"
              ],
+
          ],
            "target-port-range": [
+
          "target-port-range": [
              {
+
            {
                "lower-port": 80
+
              "lower-port": 80
              },
+
            },
              {
+
            {
                "lower-port": 443
+
              "lower-port": 443
              },
+
            },
              {
+
            {
                  "lower-port": 8080
+
              "lower-port": 8080
              }
+
            }
            ],
+
          ],
            "target-protocol": [
+
          "target-protocol": [
                6
+
            6
            ],
+
          ],
            "attack-status": "under-attack"
+
          "attack-status": "under-attack"
          }
+
        }
        ]
+
      ]
      }
+
    }
      }
+
  }
  
                  Figure 16: An Example of Efficacy Update
+
              Figure 16: An Example of Efficacy Update
  
  The 'attack-status' parameter is a mandatory attribute when
+
The 'attack-status' parameter is a mandatory attribute when
  performing an efficacy update.  The various possible values contained
+
performing an efficacy update.  The various possible values contained
  in the 'attack-status' parameter are described in Table 4.
+
in the 'attack-status' parameter are described in Table 4.
  
            +-----------+-------------------------------------+
+
        +-----------+-------------------------------------+
            | Parameter | Description                        |
+
        | Parameter | Description                        |
            |    Value |                                    |
+
        |    Value |                                    |
            +===========+=====================================+
+
        +===========+=====================================+
            |        1 | The DOTS client determines that it  |
+
        |        1 | The DOTS client determines that it  |
            |          | is still under attack.              |
+
        |          | is still under attack.              |
            +-----------+-------------------------------------+
+
        +-----------+-------------------------------------+
            |        2 | The DOTS client determines that the |
+
        |        2 | The DOTS client determines that the |
            |          | attack is successfully mitigated    |
+
        |          | attack is successfully mitigated    |
            |          | (e.g., attack traffic is not seen). |
+
        |          | (e.g., attack traffic is not seen). |
            +-----------+-------------------------------------+
+
        +-----------+-------------------------------------+
  
                Table 4: Values of 'attack-status' Parameter
+
            Table 4: Values of 'attack-status' Parameter
  
  The DOTS server indicates the result of processing a PUT request
+
The DOTS server indicates the result of processing a PUT request
  using CoAP Response Codes.  The Response Code 2.04 (Changed) is
+
using CoAP Response Codes.  The Response Code 2.04 (Changed) is
  returned if the DOTS server has accepted the mitigation efficacy
+
returned if the DOTS server has accepted the mitigation efficacy
  update.  The error Response Code 5.03 (Service Unavailable) is
+
update.  The error Response Code 5.03 (Service Unavailable) is
  returned if the DOTS server has erred or is incapable of performing
+
returned if the DOTS server has erred or is incapable of performing
  the mitigation.  As specified in [RFC7252], 5.03 uses Max-Age Option
+
the mitigation.  As specified in [[RFC7252]], 5.03 uses Max-Age Option
  to indicate the number of seconds after which to retry.
+
to indicate the number of seconds after which to retry.
  
4.4.4.  Withdraw a Mitigation
+
==== Withdraw a Mitigation ====
  
  DELETE requests are used to withdraw DOTS mitigation requests from
+
DELETE requests are used to withdraw DOTS mitigation requests from
  DOTS servers (Figure 17).
+
DOTS servers (Figure 17).
  
  'cuid' and 'mid' are mandatory Uri-Path parameters for DELETE
+
'cuid' and 'mid' are mandatory Uri-Path parameters for DELETE
  requests.
+
requests.
  
  The same considerations for manipulating 'cdid' parameter by DOTS
+
The same considerations for manipulating 'cdid' parameter by DOTS
  gateways, as specified in Section 4.4.1, MUST be followed for DELETE
+
gateways, as specified in Section 4.4.1, MUST be followed for DELETE
  requests.  Uri-Path parameters with empty values MUST NOT be present
+
requests.  Uri-Path parameters with empty values MUST NOT be present
  in a request.
+
in a request.
  
    Header: DELETE (Code=0.04)
+
  Header: DELETE (Code=0.04)
    Uri-Path: ".well-known"
+
  Uri-Path: ".well-known"
    Uri-Path: "dots"
+
  Uri-Path: "dots"
    Uri-Path: "mitigate"
+
  Uri-Path: "mitigate"
    Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
+
  Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
    Uri-Path: "mid=123"
+
  Uri-Path: "mid=123"
  
                  Figure 17: Withdraw a DOTS Mitigation
+
                Figure 17: Withdraw a DOTS Mitigation
  
  If the DELETE request does not include 'cuid' and 'mid' parameters,
+
If the DELETE request does not include 'cuid' and 'mid' parameters,
  the DOTS server MUST reply with a 4.00 (Bad Request).
+
the DOTS server MUST reply with a 4.00 (Bad Request).
  
  Once the request is validated, the DOTS server immediately
+
Once the request is validated, the DOTS server immediately
  acknowledges a DOTS client's request to withdraw the DOTS signal
+
acknowledges a DOTS client's request to withdraw the DOTS signal
  using 2.02 (Deleted) Response Code with no response payload.  A 2.02
+
using 2.02 (Deleted) Response Code with no response payload.  A 2.02
  (Deleted) Response Code is returned even if the 'mid' parameter value
+
(Deleted) Response Code is returned even if the 'mid' parameter value
  conveyed in the DELETE request does not exist in its configuration
+
conveyed in the DELETE request does not exist in its configuration
  data before the request.
+
data before the request.
  
  If the DOTS server finds the 'mid' parameter value conveyed in the
+
If the DOTS server finds the 'mid' parameter value conveyed in the
  DELETE request in its configuration data for the DOTS client, then to
+
DELETE request in its configuration data for the DOTS client, then to
  protect against route or DNS flapping caused by a DOTS client rapidly
+
protect against route or DNS flapping caused by a DOTS client rapidly
  removing a mitigation, and to dampen the effect of oscillating
+
removing a mitigation, and to dampen the effect of oscillating
  attacks, the DOTS server MAY allow mitigation to continue for a
+
attacks, the DOTS server MAY allow mitigation to continue for a
  limited period after acknowledging a DOTS client's withdrawal of a
+
limited period after acknowledging a DOTS client's withdrawal of a
  mitigation request.  During this period, the DOTS server status
+
mitigation request.  During this period, the DOTS server status
  messages SHOULD indicate that mitigation is active but terminating
+
messages SHOULD indicate that mitigation is active but terminating
  (Section 4.4.2).
+
(Section 4.4.2).
  
  The initial active-but-terminating period SHOULD be sufficiently long
+
The initial active-but-terminating period SHOULD be sufficiently long
  to absorb latency incurred by route propagation.  The active-but-
+
to absorb latency incurred by route propagation.  The active-but-
  terminating period SHOULD be set by default to 120 seconds.  If the
+
terminating period SHOULD be set by default to 120 seconds.  If the
  client requests mitigation again before the initial active-but-
+
client requests mitigation again before the initial active-but-
  terminating period elapses, the DOTS server MAY exponentially
+
terminating period elapses, the DOTS server MAY exponentially
  increase (the base of the exponent is 2) the active-but-terminating
+
increase (the base of the exponent is 2) the active-but-terminating
  period up to a maximum of 300 seconds (5 minutes).
+
period up to a maximum of 300 seconds (5 minutes).
  
  Once the active-but-terminating period elapses, the DOTS server MUST
+
Once the active-but-terminating period elapses, the DOTS server MUST
  treat the mitigation as terminated, as the DOTS client is no longer
+
treat the mitigation as terminated, as the DOTS client is no longer
  responsible for the mitigation.
+
responsible for the mitigation.
  
  If a mitigation is triggered due to a signal channel loss, the DOTS
+
If a mitigation is triggered due to a signal channel loss, the DOTS
  server relies upon normal triggers to stop that mitigation
+
server relies upon normal triggers to stop that mitigation
  (typically, receipt of a valid DELETE request, expiry of the
+
(typically, receipt of a valid DELETE request, expiry of the
  mitigation lifetime, or scrubbing the traffic to the attack target).
+
mitigation lifetime, or scrubbing the traffic to the attack target).
  In particular, the DOTS server MUST NOT consider the signal channel
+
In particular, the DOTS server MUST NOT consider the signal channel
  recovery as a trigger to stop the mitigation.
+
recovery as a trigger to stop the mitigation.
  
4.5.  DOTS Signal Channel Session Configuration
+
=== DOTS Signal Channel Session Configuration ===
  
  A DOTS client can negotiate, configure, and retrieve the DOTS signal
+
A DOTS client can negotiate, configure, and retrieve the DOTS signal
  channel session behavior with its DOTS peers.  The DOTS signal
+
channel session behavior with its DOTS peers.  The DOTS signal
  channel can be used, for example, to configure the following:
+
channel can be used, for example, to configure the following:
  
  a.  Heartbeat interval (heartbeat-interval): DOTS agents regularly
+
a.  Heartbeat interval (heartbeat-interval): DOTS agents regularly
      send heartbeats to each other after mutual authentication is
+
    send heartbeats to each other after mutual authentication is
      successfully completed in order to keep the DOTS signal channel
+
    successfully completed in order to keep the DOTS signal channel
      open.  Heartbeat messages are exchanged between DOTS agents every
+
    open.  Heartbeat messages are exchanged between DOTS agents every
      'heartbeat-interval' seconds to detect the current status of the
+
    'heartbeat-interval' seconds to detect the current status of the
      DOTS signal channel session.
+
    DOTS signal channel session.
  
  b.  Missing heartbeats allowed (missing-hb-allowed): This variable
+
b.  Missing heartbeats allowed (missing-hb-allowed): This variable
      indicates the maximum number of consecutive heartbeat messages
+
    indicates the maximum number of consecutive heartbeat messages
      for which a DOTS agent did not receive a response before
+
    for which a DOTS agent did not receive a response before
      concluding that the session is disconnected or defunct.
+
    concluding that the session is disconnected or defunct.
  
  c.  Acceptable probing rate (probing-rate): This parameter indicates
+
c.  Acceptable probing rate (probing-rate): This parameter indicates
      the average data rate that must not be exceeded by a DOTS agent
+
    the average data rate that must not be exceeded by a DOTS agent
      in sending to a peer DOTS agent that does not respond.
+
    in sending to a peer DOTS agent that does not respond.
  
  d.  Acceptable signal loss ratio: Maximum retransmissions,
+
d.  Acceptable signal loss ratio: Maximum retransmissions,
      retransmission timeout value, and other message transmission
+
    retransmission timeout value, and other message transmission
      parameters for Confirmable messages over the DOTS signal channel.
+
    parameters for Confirmable messages over the DOTS signal channel.
  
  When the DOTS signal channel is established over a reliable transport
+
When the DOTS signal channel is established over a reliable transport
  (e.g., TCP), there is no need for the reliability mechanisms provided
+
(e.g., TCP), there is no need for the reliability mechanisms provided
  by CoAP over UDP since the underlying TCP connection provides
+
by CoAP over UDP since the underlying TCP connection provides
  retransmissions and deduplication [RFC8323].  As a reminder, CoAP
+
retransmissions and deduplication [[RFC8323]].  As a reminder, CoAP
  over reliable transports does not support Confirmable or Non-
+
over reliable transports does not support Confirmable or Non-
  confirmable message types.  As such, the transmission-related
+
confirmable message types.  As such, the transmission-related
  parameters ('missing-hb-allowed' and acceptable signal loss ratio)
+
parameters ('missing-hb-allowed' and acceptable signal loss ratio)
  are negotiated only for DOTS over unreliable transports.
+
are negotiated only for DOTS over unreliable transports.
  
  The same or distinct configuration sets may be used during times when
+
The same or distinct configuration sets may be used during times when
  a mitigation is active ('mitigating-config') and when no mitigation
+
a mitigation is active ('mitigating-config') and when no mitigation
  is active ('idle-config').  This is particularly useful for DOTS
+
is active ('idle-config').  This is particularly useful for DOTS
  servers that might want to reduce heartbeat frequency or cease
+
servers that might want to reduce heartbeat frequency or cease
  heartbeat exchanges when an active DOTS client has not requested
+
heartbeat exchanges when an active DOTS client has not requested
  mitigation.  If distinct configurations are used, DOTS agents MUST
+
mitigation.  If distinct configurations are used, DOTS agents MUST
  follow the appropriate configuration set as a function of the
+
follow the appropriate configuration set as a function of the
  mitigation activity (e.g., if no mitigation request is active (also
+
mitigation activity (e.g., if no mitigation request is active (also
  referred to as 'idle' time), values related to 'idle-config' must be
+
referred to as 'idle' time), values related to 'idle-config' must be
  followed).  Additionally, DOTS agents MUST automatically switch to
+
followed).  Additionally, DOTS agents MUST automatically switch to
  the other configuration upon a change in the mitigation activity
+
the other configuration upon a change in the mitigation activity
  (e.g., if an attack mitigation is launched after an 'idle' time, the
+
(e.g., if an attack mitigation is launched after an 'idle' time, the
  DOTS agent switches from values related to 'idle-config' to values
+
DOTS agent switches from values related to 'idle-config' to values
  related to 'mitigating-config').
+
related to 'mitigating-config').
  
  CoAP requests and responses are indicated for reliable delivery by
+
CoAP requests and responses are indicated for reliable delivery by
  marking them as Confirmable messages.  DOTS signal channel session
+
marking them as Confirmable messages.  DOTS signal channel session
  configuration requests and responses are marked as Confirmable
+
configuration requests and responses are marked as Confirmable
  messages.  As explained in Section 2.1 of [RFC7252], a Confirmable
+
messages.  As explained in Section 2.1 of [[RFC7252]], a Confirmable
  message is retransmitted using a default timeout and exponential
+
message is retransmitted using a default timeout and exponential
  backoff between retransmissions, until the DOTS server sends an
+
backoff between retransmissions, until the DOTS server sends an
  Acknowledgement message (ACK) with the same Message ID conveyed from
+
Acknowledgement message (ACK) with the same Message ID conveyed from
  the DOTS client.
+
the DOTS client.
  
  Message transmission parameters are defined in Section 4.8 of
+
Message transmission parameters are defined in Section 4.8 of
  [RFC7252].  The DOTS server can either piggyback the response in the
+
[[RFC7252]].  The DOTS server can either piggyback the response in the
  Acknowledgement message or, if the DOTS server cannot respond
+
Acknowledgement message or, if the DOTS server cannot respond
  immediately to a request carried in a Confirmable message, it simply
+
immediately to a request carried in a Confirmable message, it simply
  responds with an Empty Acknowledgement message so that the DOTS
+
responds with an Empty Acknowledgement message so that the DOTS
  client can stop retransmitting the request.  Empty Acknowledgement
+
client can stop retransmitting the request.  Empty Acknowledgement
  messages are explained in Section 2.2 of [RFC7252].  When the
+
messages are explained in Section 2.2 of [[RFC7252]].  When the
  response is ready, the server sends it in a new Confirmable message,
+
response is ready, the server sends it in a new Confirmable message,
  which, in turn, needs to be acknowledged by the DOTS client (see
+
which, in turn, needs to be acknowledged by the DOTS client (see
  Sections 5.2.1 and 5.2.2 of [RFC7252]).  Requests and responses
+
Sections 5.2.1 and 5.2.2 of [[RFC7252]]).  Requests and responses
  exchanged between DOTS agents during 'idle' time, except heartbeat
+
exchanged between DOTS agents during 'idle' time, except heartbeat
  messages, are marked as Confirmable messages.
+
messages, are marked as Confirmable messages.
  
      |  Implementation Note: A DOTS client that receives a response in
+
  |  Implementation Note: A DOTS client that receives a response in
      |  a Confirmable message may want to clean up the message state
+
  |  a Confirmable message may want to clean up the message state
      |  right after sending the ACK.  If that ACK is lost and the DOTS
+
  |  right after sending the ACK.  If that ACK is lost and the DOTS
      |  server retransmits the Confirmable message, the DOTS client may
+
  |  server retransmits the Confirmable message, the DOTS client may
      |  no longer have any state that would help it correlate this
+
  |  no longer have any state that would help it correlate this
      |  response: from the DOTS client's standpoint, the retransmission
+
  |  response: from the DOTS client's standpoint, the retransmission
      |  message is unexpected.  The DOTS client will send a Reset
+
  |  message is unexpected.  The DOTS client will send a Reset
      |  message so it does not receive any more retransmissions.  This
+
  |  message so it does not receive any more retransmissions.  This
      |  behavior is normal and not an indication of an error (see
+
  |  behavior is normal and not an indication of an error (see
      |  Section 5.3.2 of [RFC7252] for more details).
+
  |  Section 5.3.2 of [[RFC7252]] for more details).
  
4.5.1.  Discover Configuration Parameters
+
==== Discover Configuration Parameters ====
  
  A GET request is used to obtain acceptable (e.g., minimum and maximum
+
A GET request is used to obtain acceptable (e.g., minimum and maximum
  values) and current configuration parameters on the DOTS server for
+
values) and current configuration parameters on the DOTS server for
  DOTS signal channel session configuration.  This procedure occurs
+
DOTS signal channel session configuration.  This procedure occurs
  between a DOTS client and its immediate peer DOTS server.  As such,
+
between a DOTS client and its immediate peer DOTS server.  As such,
  this GET request MUST NOT be relayed by a DOTS gateway.
+
this GET request MUST NOT be relayed by a DOTS gateway.
  
  Figure 18 shows how to obtain configuration parameters that the DOTS
+
Figure 18 shows how to obtain configuration parameters that the DOTS
  server will find acceptable.
+
server will find acceptable.
  
    Header: GET (Code=0.01)
+
  Header: GET (Code=0.01)
    Uri-Path: ".well-known"
+
  Uri-Path: ".well-known"
    Uri-Path: "dots"
+
  Uri-Path: "dots"
    Uri-Path: "config"
+
  Uri-Path: "config"
  
                  Figure 18: GET to Retrieve Configuration
+
              Figure 18: GET to Retrieve Configuration
  
  The DOTS server in the 2.05 (Content) response conveys the current,
+
The DOTS server in the 2.05 (Content) response conveys the current,
  minimum, and maximum attribute values acceptable by the DOTS server
+
minimum, and maximum attribute values acceptable by the DOTS server
  (Figure 19).
+
(Figure 19).
  
  {
+
{
    "ietf-dots-signal-channel:signal-config": {
+
  "ietf-dots-signal-channel:signal-config": {
      "mitigating-config": {
+
    "mitigating-config": {
        "heartbeat-interval": {
+
      "heartbeat-interval": {
          "max-value": number,
+
        "max-value": number,
          "min-value": number,
+
        "min-value": number,
          "current-value": number
+
        "current-value": number
        },
+
      },
        "missing-hb-allowed": {
+
      "missing-hb-allowed": {
          "max-value": number,
+
        "max-value": number,
          "min-value": number,
+
        "min-value": number,
          "current-value": number
+
        "current-value": number
        },
+
      },
        "probing-rate": {
+
      "probing-rate": {
          "max-value": number,
+
        "max-value": number,
          "min-value": number,
+
        "min-value": number,
          "current-value": number
+
        "current-value": number
        },
+
      },
        "max-retransmit": {
+
      "max-retransmit": {
          "max-value": number,
+
        "max-value": number,
          "min-value": number,
+
        "min-value": number,
          "current-value": number
+
        "current-value": number
        },
+
      },
        "ack-timeout": {
+
      "ack-timeout": {
          "max-value-decimal": "string",
+
        "max-value-decimal": "string",
          "min-value-decimal": "string",
+
        "min-value-decimal": "string",
          "current-value-decimal": "string"
+
        "current-value-decimal": "string"
        },
+
      },
        "ack-random-factor": {
+
      "ack-random-factor": {
          "max-value-decimal": "string",
+
        "max-value-decimal": "string",
          "min-value-decimal": "string",
+
        "min-value-decimal": "string",
          "current-value-decimal": "string"
+
        "current-value-decimal": "string"
        }
+
      }
      },
+
    },
      "idle-config": {
+
    "idle-config": {
        "heartbeat-interval": {
+
      "heartbeat-interval": {
          "max-value": number,
+
        "max-value": number,
          "min-value": number,
+
        "min-value": number,
          "current-value": number
+
        "current-value": number
        },
+
      },
        "missing-hb-allowed": {
+
      "missing-hb-allowed": {
          "max-value": number,
+
        "max-value": number,
          "min-value": number,
+
        "min-value": number,
          "current-value": number
+
        "current-value": number
        },
+
      },
        "probing-rate": {
+
      "probing-rate": {
          "max-value": number,
+
        "max-value": number,
          "min-value": number,
+
        "min-value": number,
          "current-value": number
+
        "current-value": number
        },
+
      },
        "max-retransmit": {
+
      "max-retransmit": {
          "max-value": number,
+
        "max-value": number,
          "min-value": number,
+
        "min-value": number,
          "current-value": number
+
        "current-value": number
        },
+
      },
        "ack-timeout": {
+
      "ack-timeout": {
          "max-value-decimal": "string",
+
        "max-value-decimal": "string",
          "min-value-decimal": "string",
+
        "min-value-decimal": "string",
          "current-value-decimal": "string"
+
        "current-value-decimal": "string"
        },
+
      },
        "ack-random-factor": {
+
      "ack-random-factor": {
          "max-value-decimal": "string",
+
        "max-value-decimal": "string",
          "min-value-decimal": "string",
+
        "min-value-decimal": "string",
          "current-value-decimal": "string"
+
        "current-value-decimal": "string"
        }
+
      }
      }
+
    }
    }
+
  }
  }
+
}
  
            Figure 19: GET Configuration Response Body Schema
+
          Figure 19: GET Configuration Response Body Schema
  
  The parameters in Figure 19 are described below:
+
The parameters in Figure 19 are described below:
  
  mitigating-config:  Set of configuration parameters to use when a
+
mitigating-config:  Set of configuration parameters to use when a
      mitigation is active.  The following parameters may be included:
+
  mitigation is active.  The following parameters may be included:
  
      heartbeat-interval:  Time interval in seconds between two
+
  heartbeat-interval:  Time interval in seconds between two
        consecutive heartbeat messages.
+
      consecutive heartbeat messages.
  
        '0' is used to disable the heartbeat mechanism.
+
      '0' is used to disable the heartbeat mechanism.
  
        This is an optional attribute.
+
      This is an optional attribute.
  
      missing-hb-allowed:  Maximum number of consecutive heartbeat
+
  missing-hb-allowed:  Maximum number of consecutive heartbeat
        messages for which the DOTS agent did not receive a response
+
      messages for which the DOTS agent did not receive a response
        before concluding that the session is disconnected.
+
      before concluding that the session is disconnected.
  
        This is an optional attribute.
+
      This is an optional attribute.
  
      probing-rate:  The average data rate that must not be exceeded by
+
  probing-rate:  The average data rate that must not be exceeded by
        a DOTS agent in sending to a peer DOTS agent that does not
+
      a DOTS agent in sending to a peer DOTS agent that does not
        respond (referred to as PROBING_RATE parameter in CoAP).
+
      respond (referred to as PROBING_RATE parameter in CoAP).
  
        This is an optional attribute.
+
      This is an optional attribute.
  
      max-retransmit:  Maximum number of retransmissions for a message
+
  max-retransmit:  Maximum number of retransmissions for a message
        (referred to as MAX_RETRANSMIT parameter in CoAP).
+
      (referred to as MAX_RETRANSMIT parameter in CoAP).
  
        This is an optional attribute.
+
      This is an optional attribute.
  
      ack-timeout:  Timeout value in seconds used to calculate the
+
  ack-timeout:  Timeout value in seconds used to calculate the
        initial retransmission timeout value (referred to as
+
      initial retransmission timeout value (referred to as
        ACK_TIMEOUT parameter in CoAP).
+
      ACK_TIMEOUT parameter in CoAP).
  
        This is an optional attribute.
+
      This is an optional attribute.
  
      ack-random-factor:  Random factor used to influence the timing of
+
  ack-random-factor:  Random factor used to influence the timing of
        retransmissions (referred to as ACK_RANDOM_FACTOR parameter in
+
      retransmissions (referred to as ACK_RANDOM_FACTOR parameter in
        CoAP).
+
      CoAP).
  
        This is an optional attribute.
+
      This is an optional attribute.
  
  idle-config:  Set of configuration parameters to use when no
+
idle-config:  Set of configuration parameters to use when no
      mitigation is active.  This attribute has the same structure as
+
  mitigation is active.  This attribute has the same structure as
      'mitigating-config'.
+
  'mitigating-config'.
  
  Figure 20 shows an example of acceptable and current configuration
+
Figure 20 shows an example of acceptable and current configuration
  parameters on a DOTS server for DOTS signal channel session
+
parameters on a DOTS server for DOTS signal channel session
  configuration.  The same acceptable configuration is used during
+
configuration.  The same acceptable configuration is used during
  mitigation and idle times.
+
mitigation and idle times.
  
  {
+
{
    "ietf-dots-signal-channel:signal-config": {
+
  "ietf-dots-signal-channel:signal-config": {
      "mitigating-config": {
+
    "mitigating-config": {
        "heartbeat-interval": {
+
      "heartbeat-interval": {
          "max-value": 240,
+
        "max-value": 240,
          "min-value": 15,
+
        "min-value": 15,
          "current-value": 30
+
        "current-value": 30
        },
+
      },
        "missing-hb-allowed": {
+
      "missing-hb-allowed": {
          "max-value": 20,
+
        "max-value": 20,
          "min-value": 3,
+
        "min-value": 3,
          "current-value": 15
+
        "current-value": 15
        },
+
      },
        "probing-rate": {
+
      "probing-rate": {
          "max-value": 20,
+
        "max-value": 20,
          "min-value": 5,
+
        "min-value": 5,
          "current-value": 15
+
        "current-value": 15
        },
+
      },
        "max-retransmit": {
+
      "max-retransmit": {
          "max-value": 15,
+
        "max-value": 15,
          "min-value": 2,
+
        "min-value": 2,
          "current-value": 3
+
        "current-value": 3
        },
+
      },
        "ack-timeout": {
+
      "ack-timeout": {
          "max-value-decimal": "30.00",
+
        "max-value-decimal": "30.00",
          "min-value-decimal": "1.00",
+
        "min-value-decimal": "1.00",
          "current-value-decimal": "2.00"
+
        "current-value-decimal": "2.00"
        },
+
      },
        "ack-random-factor": {
+
      "ack-random-factor": {
          "max-value-decimal": "4.00",
+
        "max-value-decimal": "4.00",
          "min-value-decimal": "1.10",
+
        "min-value-decimal": "1.10",
          "current-value-decimal": "1.50"
+
        "current-value-decimal": "1.50"
        }
+
      }
      },
+
    },
      "idle-config": {
+
    "idle-config": {
        "heartbeat-interval": {
+
      "heartbeat-interval": {
          "max-value": 240,
+
        "max-value": 240,
          "min-value": 15,
+
        "min-value": 15,
          "current-value": 30
+
        "current-value": 30
        },
+
      },
        "missing-hb-allowed": {
+
      "missing-hb-allowed": {
          "max-value": 20,
+
        "max-value": 20,
          "min-value": 3,
+
        "min-value": 3,
          "current-value": 15
+
        "current-value": 15
        },
+
      },
        "probing-rate": {
+
      "probing-rate": {
          "max-value": 20,
+
        "max-value": 20,
          "min-value": 5,
+
        "min-value": 5,
          "current-value": 15
+
        "current-value": 15
        },
+
      },
        "max-retransmit": {
+
      "max-retransmit": {
          "max-value": 15,
+
        "max-value": 15,
          "min-value": 2,
+
        "min-value": 2,
          "current-value": 3
+
        "current-value": 3
        },
+
      },
        "ack-timeout": {
+
      "ack-timeout": {
          "max-value-decimal": "30.00",
+
        "max-value-decimal": "30.00",
          "min-value-decimal": "1.00",
+
        "min-value-decimal": "1.00",
          "current-value-decimal": "2.00"
+
        "current-value-decimal": "2.00"
        },
+
      },
        "ack-random-factor": {
+
      "ack-random-factor": {
          "max-value-decimal": "4.00",
+
        "max-value-decimal": "4.00",
          "min-value-decimal": "1.10",
+
        "min-value-decimal": "1.10",
          "current-value-decimal": "1.50"
+
        "current-value-decimal": "1.50"
        }
+
      }
      }
+
    }
    }
+
  }
  }
+
}
  
            Figure 20: Example of a Configuration Response Body
+
        Figure 20: Example of a Configuration Response Body
  
4.5.2.  Convey DOTS Signal Channel Session Configuration
+
==== Convey DOTS Signal Channel Session Configuration ====
  
  A PUT request (Figures 21 and 22) is used to convey the configuration
+
A PUT request (Figures 21 and 22) is used to convey the configuration
  parameters for the signal channel (e.g., heartbeat interval, maximum
+
parameters for the signal channel (e.g., heartbeat interval, maximum
  retransmissions).  Message transmission parameters for CoAP are
+
retransmissions).  Message transmission parameters for CoAP are
  defined in Section 4.8 of [RFC7252].  The RECOMMENDED values of
+
defined in Section 4.8 of [[RFC7252]].  The RECOMMENDED values of
  transmission parameter values are 'ack-timeout' (2 seconds), 'max-
+
transmission parameter values are 'ack-timeout' (2 seconds), 'max-
  retransmit' (3), and 'ack-random-factor' (1.5).  In addition to those
+
retransmit' (3), and 'ack-random-factor' (1.5).  In addition to those
  parameters, the RECOMMENDED specific DOTS transmission parameter
+
parameters, the RECOMMENDED specific DOTS transmission parameter
  values are 'heartbeat-interval' (30 seconds) and 'missing-hb-allowed'
+
values are 'heartbeat-interval' (30 seconds) and 'missing-hb-allowed'
  (15).
+
(15).
  
      |  Note: 'heartbeat-interval' should be tweaked to also assist
+
  |  Note: 'heartbeat-interval' should be tweaked to also assist
      |  DOTS messages for NAT traversal (SIG-011 of [RFC8612]).
+
  |  DOTS messages for NAT traversal (SIG-011 of [[RFC8612]]).
      |  According to [RFC8085], heartbeat messages must not be sent
+
  |  According to [[RFC8085]], heartbeat messages must not be sent
      |  more frequently than once every 15 seconds and should use
+
  |  more frequently than once every 15 seconds and should use
      |  longer intervals when possible.  Furthermore, [RFC4787]
+
  |  longer intervals when possible.  Furthermore, [[RFC4787]]
      |  recommends that NATs use a state timeout of 2 minutes or
+
  |  recommends that NATs use a state timeout of 2 minutes or
      |  longer, but experience shows that sending packets every 15 to
+
  |  longer, but experience shows that sending packets every 15 to
      |  30 seconds is necessary to prevent the majority of middleboxes
+
  |  30 seconds is necessary to prevent the majority of middleboxes
      |  from losing state for UDP flows.  From that standpoint, the
+
  |  from losing state for UDP flows.  From that standpoint, the
      |  RECOMMENDED minimum 'heartbeat-interval' is 15 seconds and the
+
  |  RECOMMENDED minimum 'heartbeat-interval' is 15 seconds and the
      |  RECOMMENDED maximum 'heartbeat-interval' is 240 seconds.  The
+
  |  RECOMMENDED maximum 'heartbeat-interval' is 240 seconds.  The
      |  recommended value of 30 seconds is selected to anticipate the
+
  |  recommended value of 30 seconds is selected to anticipate the
      |  expiry of NAT state.
+
  |  expiry of NAT state.
      |   
+
  |   
      |  A 'heartbeat-interval' of 30 seconds may be considered to be
+
  |  A 'heartbeat-interval' of 30 seconds may be considered to be
      |  too chatty in some deployments.  For such deployments, DOTS
+
  |  too chatty in some deployments.  For such deployments, DOTS
      |  agents may negotiate longer 'heartbeat-interval' values to
+
  |  agents may negotiate longer 'heartbeat-interval' values to
      |  prevent any network overload with too frequent heartbeats.
+
  |  prevent any network overload with too frequent heartbeats.
      |   
+
  |   
      |  Different heartbeat intervals can be defined for 'mitigating-
+
  |  Different heartbeat intervals can be defined for 'mitigating-
      |  config' and 'idle-config' to reduce being too chatty during
+
  |  config' and 'idle-config' to reduce being too chatty during
      |  idle times.  If there is an on-path translator between the DOTS
+
  |  idle times.  If there is an on-path translator between the DOTS
      |  client (standalone or part of a DOTS gateway) and the DOTS
+
  |  client (standalone or part of a DOTS gateway) and the DOTS
      |  server, the 'mitigating-config' 'heartbeat-interval' has to be
+
  |  server, the 'mitigating-config' 'heartbeat-interval' has to be
      |  smaller than the translator session timeout.  It is recommended
+
  |  smaller than the translator session timeout.  It is recommended
      |  that the 'idle-config' 'heartbeat-interval' also be smaller
+
  |  that the 'idle-config' 'heartbeat-interval' also be smaller
      |  than the translator session timeout to prevent translator
+
  |  than the translator session timeout to prevent translator
      |  traversal issues or that it be disabled entirely.  Means to
+
  |  traversal issues or that it be disabled entirely.  Means to
      |  discover the lifetime assigned by a translator are out of
+
  |  discover the lifetime assigned by a translator are out of
      |  scope.
+
  |  scope.
      |   
+
  |   
      |  Given that the size of the heartbeat request cannot exceed
+
  |  Given that the size of the heartbeat request cannot exceed
      |  ('heartbeat-interval' * 'probing-rate') bytes, 'probing-rate'
+
  |  ('heartbeat-interval' * 'probing-rate') bytes, 'probing-rate'
      |  should be set appropriately to avoid slowing down heartbeat
+
  |  should be set appropriately to avoid slowing down heartbeat
      |  exchanges.  For example, 'probing-rate' may be set to 2 *
+
  |  exchanges.  For example, 'probing-rate' may be set to 2 *
      |  ("size of encrypted DOTS heartbeat request"/'heartbeat-
+
  |  ("size of encrypted DOTS heartbeat request"/'heartbeat-
      |  interval') or (("size of encrypted DOTS heartbeat request" +
+
  |  interval') or (("size of encrypted DOTS heartbeat request" +
      |  "average size of an encrypted mitigation request")/'heartbeat-
+
  |  "average size of an encrypted mitigation request")/'heartbeat-
      |  interval').  Absent any explicit configuration or inability to
+
  |  interval').  Absent any explicit configuration or inability to
      |  dynamically adjust 'probing-rate' values (Section 4.8.1 of
+
  |  dynamically adjust 'probing-rate' values (Section 4.8.1 of
      |  [RFC7252]), DOTS agents use 5 bytes/second as a default
+
  [[RFC7252]]), DOTS agents use 5 bytes/second as a default
      |  'probing-rate' value.
+
  |  'probing-rate' value.
  
  If the DOTS agent wishes to change the default values of message
+
If the DOTS agent wishes to change the default values of message
  transmission parameters, it SHOULD follow the guidance given in
+
transmission parameters, it SHOULD follow the guidance given in
  Section 4.8.1 of [RFC7252].  The DOTS agents MUST use the negotiated
+
Section 4.8.1 of [[RFC7252]].  The DOTS agents MUST use the negotiated
  values for message transmission parameters and default values for
+
values for message transmission parameters and default values for
  non-negotiated message transmission parameters.
+
non-negotiated message transmission parameters.
  
  The signal channel session configuration is applicable to a single
+
The signal channel session configuration is applicable to a single
  DOTS signal channel session between DOTS agents, so the 'cuid' Uri-
+
DOTS signal channel session between DOTS agents, so the 'cuid' Uri-
  Path MUST NOT be used.
+
Path MUST NOT be used.
  
    Header: PUT (Code=0.03)
+
  Header: PUT (Code=0.03)
    Uri-Path: ".well-known"
+
  Uri-Path: ".well-known"
    Uri-Path: "dots"
+
  Uri-Path: "dots"
    Uri-Path: "config"
+
  Uri-Path: "config"
    Uri-Path: "sid=123"
+
  Uri-Path: "sid=123"
    Content-Format: "application/dots+cbor"
+
  Content-Format: "application/dots+cbor"
  
    {
+
  {
      ...
+
  ...
    }
+
  }
  
          Figure 21: PUT to Convey the DOTS Signal Channel Session
+
      Figure 21: PUT to Convey the DOTS Signal Channel Session
                            Configuration Data
+
                          Configuration Data
  
  The additional Uri-Path parameter to those defined in Table 1 is as
+
The additional Uri-Path parameter to those defined in Table 1 is as
  follows:
+
follows:
  
  sid:  Session Identifier is an identifier for the DOTS signal channel
+
sid:  Session Identifier is an identifier for the DOTS signal channel
        session configuration data represented as an integer.  This
+
    session configuration data represented as an integer.  This
        identifier MUST be generated by DOTS clients.  'sid' values MUST
+
    identifier MUST be generated by DOTS clients.  'sid' values MUST
        increase monotonically (when a new PUT is generated by a DOTS
+
    increase monotonically (when a new PUT is generated by a DOTS
        client to convey the configuration parameters for the signal
+
    client to convey the configuration parameters for the signal
        channel).
+
    channel).
  
        This is a mandatory attribute.
+
    This is a mandatory attribute.
  
    {
+
  {
      "ietf-dots-signal-channel:signal-config": {
+
    "ietf-dots-signal-channel:signal-config": {
        "mitigating-config": {
+
      "mitigating-config": {
          "heartbeat-interval": {
+
        "heartbeat-interval": {
            "current-value": number
+
          "current-value": number
          },
+
        },
          "missing-hb-allowed": {
+
        "missing-hb-allowed": {
            "current-value": number
+
          "current-value": number
          },
+
        },
          "probing-rate": {
+
        "probing-rate": {
            "current-value": number
+
          "current-value": number
          },
+
        },
          "max-retransmit": {
+
        "max-retransmit": {
            "current-value": number
+
          "current-value": number
          },
+
        },
          "ack-timeout": {
+
        "ack-timeout": {
            "current-value-decimal": "string"
+
          "current-value-decimal": "string"
          },
+
        },
          "ack-random-factor": {
+
        "ack-random-factor": {
            "current-value-decimal": "string"
+
          "current-value-decimal": "string"
          }
+
        }
        },
+
      },
        "idle-config": {
+
      "idle-config": {
          "heartbeat-interval": {
+
        "heartbeat-interval": {
            "current-value": number
+
          "current-value": number
          },
+
        },
          "missing-hb-allowed": {
+
        "missing-hb-allowed": {
            "current-value": number
+
          "current-value": number
          },
+
        },
          "probing-rate": {
+
        "probing-rate": {
            "current-value": number
+
          "current-value": number
          },
+
        },
          "max-retransmit": {
+
        "max-retransmit": {
            "current-value": number
+
          "current-value": number
          },
+
        },
          "ack-timeout": {
+
        "ack-timeout": {
            "current-value-decimal": "string"
+
          "current-value-decimal": "string"
          },
+
        },
          "ack-random-factor": {
+
        "ack-random-factor": {
            "current-value-decimal": "string"
+
          "current-value-decimal": "string"
          }
+
        }
        }
+
      }
      }
+
    }
    }
+
  }
  
          Figure 22: PUT to Convey the DOTS Signal Channel Session
+
      Figure 22: PUT to Convey the DOTS Signal Channel Session
                  Configuration Data (Message Body Schema)
+
              Configuration Data (Message Body Schema)
  
  The meaning of the parameters in the CBOR body (Figure 22) is defined
+
The meaning of the parameters in the CBOR body (Figure 22) is defined
  in Section 4.5.1.
+
in Section 4.5.1.
  
  At least one of the attributes 'heartbeat-interval', 'missing-hb-
+
At least one of the attributes 'heartbeat-interval', 'missing-hb-
  allowed', 'probing-rate', 'max-retransmit', 'ack-timeout', and 'ack-
+
allowed', 'probing-rate', 'max-retransmit', 'ack-timeout', and 'ack-
  random-factor' MUST be present in the PUT request.  Note that
+
random-factor' MUST be present in the PUT request.  Note that
  'heartbeat-interval', 'missing-hb-allowed', 'probing-rate', 'max-
+
'heartbeat-interval', 'missing-hb-allowed', 'probing-rate', 'max-
  retransmit', 'ack-timeout', and 'ack-random-factor', if present, do
+
retransmit', 'ack-timeout', and 'ack-random-factor', if present, do
  not need to be provided for both 'mitigating-config', and 'idle-
+
not need to be provided for both 'mitigating-config', and 'idle-
  config' in a PUT request.
+
config' in a PUT request.
  
  The PUT request with a higher numeric 'sid' value overrides the DOTS
+
The PUT request with a higher numeric 'sid' value overrides the DOTS
  signal channel session configuration data installed by a PUT request
+
signal channel session configuration data installed by a PUT request
  with a lower numeric 'sid' value.  To avoid maintaining a long list
+
with a lower numeric 'sid' value.  To avoid maintaining a long list
  of 'sid' requests from a DOTS client, the lower numeric 'sid' MUST be
+
of 'sid' requests from a DOTS client, the lower numeric 'sid' MUST be
  automatically deleted and no longer available at the DOTS server.
+
automatically deleted and no longer available at the DOTS server.
  
  Figure 23 shows a PUT request example to convey the configuration
+
Figure 23 shows a PUT request example to convey the configuration
  parameters for the DOTS signal channel.  In this example, the
+
parameters for the DOTS signal channel.  In this example, the
  heartbeat mechanism is disabled when no mitigation is active, while
+
heartbeat mechanism is disabled when no mitigation is active, while
  the heartbeat interval is set to '30' when a mitigation is active.
+
the heartbeat interval is set to '30' when a mitigation is active.
  
    Header: PUT (Code=0.03)
+
  Header: PUT (Code=0.03)
    Uri-Path: ".well-known"
+
  Uri-Path: ".well-known"
    Uri-Path: "dots"
+
  Uri-Path: "dots"
    Uri-Path: "config"
+
  Uri-Path: "config"
    Uri-Path: "sid=123"
+
  Uri-Path: "sid=123"
    Content-Format: "application/dots+cbor"
+
  Content-Format: "application/dots+cbor"
  
    {
+
  {
      "ietf-dots-signal-channel:signal-config": {
+
    "ietf-dots-signal-channel:signal-config": {
        "mitigating-config": {
+
      "mitigating-config": {
          "heartbeat-interval": {
+
        "heartbeat-interval": {
            "current-value": 30
+
          "current-value": 30
          },
+
        },
          "missing-hb-allowed": {
+
        "missing-hb-allowed": {
            "current-value": 15
+
          "current-value": 15
          },
+
        },
          "probing-rate": {
+
        "probing-rate": {
            "current-value": 15
+
          "current-value": 15
          },
+
        },
          "max-retransmit": {
+
        "max-retransmit": {
            "current-value": 3
+
          "current-value": 3
          },
+
        },
          "ack-timeout": {
+
        "ack-timeout": {
            "current-value-decimal": "2.00"
+
          "current-value-decimal": "2.00"
          },
+
        },
          "ack-random-factor": {
+
        "ack-random-factor": {
            "current-value-decimal": "1.50"
+
          "current-value-decimal": "1.50"
          }
+
        }
        },
+
      },
        "idle-config": {
+
      "idle-config": {
          "heartbeat-interval": {
+
        "heartbeat-interval": {
            "current-value": 0
+
          "current-value": 0
          },
+
        },
          "max-retransmit": {
+
        "max-retransmit": {
            "current-value": 3
+
          "current-value": 3
          },
+
        },
          "ack-timeout": {
+
        "ack-timeout": {
            "current-value-decimal": "2.00"
+
          "current-value-decimal": "2.00"
          },
+
        },
          "ack-random-factor": {
+
        "ack-random-factor": {
            "current-value-decimal": "1.50"
+
          "current-value-decimal": "1.50"
          }
+
        }
        }
+
      }
      }
+
    }
    }
+
  }
  
          Figure 23: PUT to Convey the Configuration Parameters
+
        Figure 23: PUT to Convey the Configuration Parameters
  
  The DOTS server indicates the result of processing the PUT request
+
The DOTS server indicates the result of processing the PUT request
  using CoAP Response Codes:
+
using CoAP Response Codes:
  
  *  If the request is missing a mandatory attribute, does not include
+
*  If the request is missing a mandatory attribute, does not include
      a 'sid' Uri-Path, or contains one or more invalid or unknown
+
  a 'sid' Uri-Path, or contains one or more invalid or unknown
      parameters, 4.00 (Bad Request) MUST be returned in the response.
+
  parameters, 4.00 (Bad Request) MUST be returned in the response.
  
  *  If the DOTS server does not find the 'sid' parameter value
+
*  If the DOTS server does not find the 'sid' parameter value
      conveyed in the PUT request in its configuration data and if the
+
  conveyed in the PUT request in its configuration data and if the
      DOTS server has accepted the configuration parameters, then a
+
  DOTS server has accepted the configuration parameters, then a
      Response Code 2.01 (Created) MUST be returned in the response.
+
  Response Code 2.01 (Created) MUST be returned in the response.
  
  *  If the DOTS server finds the 'sid' parameter value conveyed in the
+
*  If the DOTS server finds the 'sid' parameter value conveyed in the
      PUT request in its configuration data and if the DOTS server has
+
  PUT request in its configuration data and if the DOTS server has
      accepted the updated configuration parameters, 2.04 (Changed) MUST
+
  accepted the updated configuration parameters, 2.04 (Changed) MUST
      be returned in the response.
+
  be returned in the response.
  
  *  If any of the 'heartbeat-interval', 'missing-hb-allowed',
+
*  If any of the 'heartbeat-interval', 'missing-hb-allowed',
      'probing-rate', 'max-retransmit', 'target-protocol', 'ack-
+
  'probing-rate', 'max-retransmit', 'target-protocol', 'ack-
      timeout', and 'ack-random-factor' attribute values are not
+
  timeout', and 'ack-random-factor' attribute values are not
      acceptable to the DOTS server, 4.22 (Unprocessable Entity) MUST be
+
  acceptable to the DOTS server, 4.22 (Unprocessable Entity) MUST be
      returned in the response.  Upon receipt of this error code, the
+
  returned in the response.  Upon receipt of this error code, the
      DOTS client SHOULD retrieve the maximum and minimum attribute
+
  DOTS client SHOULD retrieve the maximum and minimum attribute
      values acceptable to the DOTS server (Section 4.5.1).
+
  values acceptable to the DOTS server (Section 4.5.1).
  
      The DOTS client may retry and send the PUT request with updated
+
  The DOTS client may retry and send the PUT request with updated
      attribute values acceptable to the DOTS server.
+
  attribute values acceptable to the DOTS server.
  
  A DOTS client may issue a GET message with a 'sid' Uri-Path parameter
+
A DOTS client may issue a GET message with a 'sid' Uri-Path parameter
  to retrieve the negotiated configuration.  The response does not need
+
to retrieve the negotiated configuration.  The response does not need
  to include 'sid' in its message body.
+
to include 'sid' in its message body.
  
4.5.3.  Configuration Freshness and Notifications
+
==== Configuration Freshness and Notifications ====
  
  Max-Age Option (Section 5.10.5 of [RFC7252]) SHOULD be returned by a
+
Max-Age Option (Section 5.10.5 of [[RFC7252]]) SHOULD be returned by a
  DOTS server to associate a validity time with a configuration it
+
DOTS server to associate a validity time with a configuration it
  sends.  This feature allows the update of the configuration data if a
+
sends.  This feature allows the update of the configuration data if a
  change occurs at the DOTS server side.  For example, the new
+
change occurs at the DOTS server side.  For example, the new
  configuration may instruct a DOTS client to cease heartbeats or
+
configuration may instruct a DOTS client to cease heartbeats or
  reduce heartbeat frequency.
+
reduce heartbeat frequency.
  
  It is NOT RECOMMENDED to return a Max-Age Option set to 0.
+
It is NOT RECOMMENDED to return a Max-Age Option set to 0.
  
  Returning a Max-Age Option set to 2^(32)-1 is equivalent to
+
Returning a Max-Age Option set to 2^(32)-1 is equivalent to
  associating an infinite lifetime with the configuration.
+
associating an infinite lifetime with the configuration.
  
  If a non-zero value of Max-Age Option is received by a DOTS client,
+
If a non-zero value of Max-Age Option is received by a DOTS client,
  it MUST issue a GET request with a 'sid' Uri-Path parameter to
+
it MUST issue a GET request with a 'sid' Uri-Path parameter to
  retrieve the current and acceptable configuration before the expiry
+
retrieve the current and acceptable configuration before the expiry
  of the value enclosed in the Max-Age Option.  This request is
+
of the value enclosed in the Max-Age Option.  This request is
  considered by the client and the server to be a means to refresh the
+
considered by the client and the server to be a means to refresh the
  configuration parameters for the signal channel.  When a DDoS attack
+
configuration parameters for the signal channel.  When a DDoS attack
  is active, refresh requests MUST NOT be sent by DOTS clients, and the
+
is active, refresh requests MUST NOT be sent by DOTS clients, and the
  DOTS server MUST NOT terminate the (D)TLS session after the expiry of
+
DOTS server MUST NOT terminate the (D)TLS session after the expiry of
  the value returned in Max-Age Option.
+
the value returned in Max-Age Option.
  
  If Max-Age Option is not returned in a response, the DOTS client
+
If Max-Age Option is not returned in a response, the DOTS client
  initiates GET requests to refresh the configuration parameters each
+
initiates GET requests to refresh the configuration parameters each
  60 seconds (Section 5.10.5 of [RFC7252]).  To prevent such overload,
+
60 seconds (Section 5.10.5 of [[RFC7252]]).  To prevent such overload,
  it is RECOMMENDED that DOTS servers return a Max-Age Option in GET
+
it is RECOMMENDED that DOTS servers return a Max-Age Option in GET
  responses.  Considerations related to which value to use and how such
+
responses.  Considerations related to which value to use and how such
  a value is set are implementation and deployment specific.
+
a value is set are implementation and deployment specific.
  
  If an Observe Option set to 0 is included in the configuration
+
If an Observe Option set to 0 is included in the configuration
  request, the DOTS server sends notifications of any configuration
+
request, the DOTS server sends notifications of any configuration
  change (Section 4.2 of [RFC7641]).
+
change (Section 4.2 of [[RFC7641]]).
  
  If a DOTS server detects that a misbehaving DOTS client does not
+
If a DOTS server detects that a misbehaving DOTS client does not
  contact the DOTS server after the expiry of Max-Age to retrieve the
+
contact the DOTS server after the expiry of Max-Age to retrieve the
  signal channel configuration data, it MAY terminate the (D)TLS
+
signal channel configuration data, it MAY terminate the (D)TLS
  session.  A (D)TLS session is terminated by the receipt of an
+
session.  A (D)TLS session is terminated by the receipt of an
  authenticated message that closes the connection (e.g., a fatal alert
+
authenticated message that closes the connection (e.g., a fatal alert
  (Section 6 of [RFC8446])).
+
(Section 6 of [[RFC8446]])).
  
4.5.4.  Delete DOTS Signal Channel Session Configuration
+
==== Delete DOTS Signal Channel Session Configuration ====
  
  A DELETE request is used to delete the installed DOTS signal channel
+
A DELETE request is used to delete the installed DOTS signal channel
  session configuration data (Figure 24).
+
session configuration data (Figure 24).
  
    Header: DELETE (Code=0.04)
+
  Header: DELETE (Code=0.04)
    Uri-Path: ".well-known"
+
  Uri-Path: ".well-known"
    Uri-Path: "dots"
+
  Uri-Path: "dots"
    Uri-Path: "config"
+
  Uri-Path: "config"
    Uri-Path: "sid=123"
+
  Uri-Path: "sid=123"
  
                      Figure 24: Delete Configuration
+
                  Figure 24: Delete Configuration
  
  The DOTS server resets the DOTS signal channel session configuration
+
The DOTS server resets the DOTS signal channel session configuration
  back to the default values and acknowledges a DOTS client's request
+
back to the default values and acknowledges a DOTS client's request
  to remove the DOTS signal channel session configuration using 2.02
+
to remove the DOTS signal channel session configuration using 2.02
  (Deleted) Response Code.
+
(Deleted) Response Code.
  
  Upon bootstrapping or reboot, a DOTS client MAY send a DELETE request
+
Upon bootstrapping or reboot, a DOTS client MAY send a DELETE request
  to set the configuration parameters to default values.  Such a
+
to set the configuration parameters to default values.  Such a
  request does not include any 'sid'.
+
request does not include any 'sid'.
  
4.6.  Redirected Signaling
+
=== Redirected Signaling ===
  
  Redirected DOTS signaling is discussed in detail in Section 3.2.2 of
+
Redirected DOTS signaling is discussed in detail in Section 3.2.2 of
  [DOTS-ARCH].
+
[DOTS-ARCH].
  
  If a DOTS server wants to redirect a DOTS client to an alternative
+
If a DOTS server wants to redirect a DOTS client to an alternative
  DOTS server for a signal session, then the Response Code 5.03
+
DOTS server for a signal session, then the Response Code 5.03
  (Service Unavailable) will be returned in the response to the DOTS
+
(Service Unavailable) will be returned in the response to the DOTS
  client.
+
client.
  
  The DOTS server can return the error Response Code 5.03 in response
+
The DOTS server can return the error Response Code 5.03 in response
  to a request from the DOTS client or convey the error Response Code
+
to a request from the DOTS client or convey the error Response Code
  5.03 in a unidirectional notification response from the DOTS server.
+
5.03 in a unidirectional notification response from the DOTS server.
  
  The DOTS server in the error response conveys the alternate DOTS
+
The DOTS server in the error response conveys the alternate DOTS
  server's FQDN, and the alternate DOTS server's IP address(es) values
+
server's FQDN, and the alternate DOTS server's IP address(es) values
  in the CBOR body (Figure 25).
+
in the CBOR body (Figure 25).
  
  {
+
{
    "ietf-dots-signal-channel:redirected-signal": {
+
  "ietf-dots-signal-channel:redirected-signal": {
      "alt-server": "string",
+
    "alt-server": "string",
      "alt-server-record": [
+
    "alt-server-record": [
          "string"
+
      "string"
      ]
+
    ]
    }
+
  }
  }
+
}
  
          Figure 25: Redirected Server Error Response Body Schema
+
      Figure 25: Redirected Server Error Response Body Schema
  
  The parameters are described below:
+
The parameters are described below:
  
  alt-server:  FQDN of an alternate DOTS server.
+
alt-server:  FQDN of an alternate DOTS server.
  
      This is a mandatory attribute.
+
  This is a mandatory attribute.
  
  alt-server-record:  A list of IP addresses of an alternate DOTS
+
alt-server-record:  A list of IP addresses of an alternate DOTS
      server.
+
  server.
  
      This is an optional attribute.
+
  This is an optional attribute.
  
  The DOTS server returns the Time to Live (TTL) of the alternate DOTS
+
The DOTS server returns the Time to Live (TTL) of the alternate DOTS
  server in a Max-Age Option.  That is, the time interval that the
+
server in a Max-Age Option.  That is, the time interval that the
  alternate DOTS server may be cached for use by a DOTS client.  A Max-
+
alternate DOTS server may be cached for use by a DOTS client.  A Max-
  Age Option set to 2^(32)-1 is equivalent to receiving an infinite
+
Age Option set to 2^(32)-1 is equivalent to receiving an infinite
  TTL.  This value means that the alternate DOTS server is to be used
+
TTL.  This value means that the alternate DOTS server is to be used
  until the alternate DOTS server redirects the traffic with another
+
until the alternate DOTS server redirects the traffic with another
  5.03 response that conveys an alternate server's FQDN.
+
5.03 response that conveys an alternate server's FQDN.
  
  A Max-Age Option set to '0' may be returned for redirecting
+
A Max-Age Option set to '0' may be returned for redirecting
  mitigation requests.  Such a value means that the redirection applies
+
mitigation requests.  Such a value means that the redirection applies
  only for the mitigation request in progress.  Returning short TTL in
+
only for the mitigation request in progress.  Returning short TTL in
  a Max-Age Option may adversely impact DOTS clients on slow links.
+
a Max-Age Option may adversely impact DOTS clients on slow links.
  Returning short values should be avoided under such conditions.
+
Returning short values should be avoided under such conditions.
  
  If the alternate DOTS server TTL has expired, the DOTS client MUST
+
If the alternate DOTS server TTL has expired, the DOTS client MUST
  use the DOTS server(s) that was provisioned using means discussed in
+
use the DOTS server(s) that was provisioned using means discussed in
  Section 4.1.  This fallback mechanism is triggered immediately upon
+
Section 4.1.  This fallback mechanism is triggered immediately upon
  expiry of the TTL, except when a DDoS attack is active.
+
expiry of the TTL, except when a DDoS attack is active.
  
  Requests issued by misbehaving DOTS clients that do not honor the TTL
+
Requests issued by misbehaving DOTS clients that do not honor the TTL
  conveyed in the Max-Age Option or react to explicit redirect messages
+
conveyed in the Max-Age Option or react to explicit redirect messages
  can be rejected by DOTS servers.
+
can be rejected by DOTS servers.
  
  Figure 26 shows a 5.03 response example to convey the DOTS alternate
+
Figure 26 shows a 5.03 response example to convey the DOTS alternate
  server 'alt-server.example' together with its IP addresses
+
server 'alt-server.example' together with its IP addresses
  2001:db8:6401::1 and 2001:db8:6401::2.
+
2001:db8:6401::1 and 2001:db8:6401::2.
  
  {
+
{
    "ietf-dots-signal-channel:redirected-signal": {
+
  "ietf-dots-signal-channel:redirected-signal": {
      "alt-server": "alt-server.example",
+
    "alt-server": "alt-server.example",
      "alt-server-record": [
+
    "alt-server-record": [
          "2001:db8:6401::1",
+
      "2001:db8:6401::1",
          "2001:db8:6401::2"
+
      "2001:db8:6401::2"
      ]
+
    ]
    }
+
  }
  }
+
}
  
        Figure 26: Example of Redirected Server Error Response Body
+
    Figure 26: Example of Redirected Server Error Response Body
  
  When the DOTS client receives a 5.03 response with an alternate
+
When the DOTS client receives a 5.03 response with an alternate
  server included, it considers the current request to have failed, but
+
server included, it considers the current request to have failed, but
  it SHOULD try resending the request to the alternate DOTS server.
+
it SHOULD try resending the request to the alternate DOTS server.
  During a DDoS attack, the DNS server may be the target of another
+
During a DDoS attack, the DNS server may be the target of another
  DDoS attack, the alternate DOTS server's IP addresses conveyed in the
+
DDoS attack, the alternate DOTS server's IP addresses conveyed in the
  5.03 response help the DOTS client skip the DNS lookup of the
+
5.03 response help the DOTS client skip the DNS lookup of the
  alternate DOTS server, at the cost of trusting the first DOTS server
+
alternate DOTS server, at the cost of trusting the first DOTS server
  to provide accurate information.  The DOTS client can then try to
+
to provide accurate information.  The DOTS client can then try to
  establish a UDP or a TCP session with the alternate DOTS server.  The
+
establish a UDP or a TCP session with the alternate DOTS server.  The
  DOTS client MAY implement a method to construct IPv4-embedded IPv6
+
DOTS client MAY implement a method to construct IPv4-embedded IPv6
  addresses [RFC6052]; this is required to handle the scenario where an
+
addresses [[RFC6052]]; this is required to handle the scenario where an
  IPv6-only DOTS client communicates with an IPv4-only alternate DOTS
+
IPv6-only DOTS client communicates with an IPv4-only alternate DOTS
  server.
+
server.
  
  If the DOTS client has been redirected to a DOTS server with which it
+
If the DOTS client has been redirected to a DOTS server with which it
  has already communicated within the last five (5) minutes, it MUST
+
has already communicated within the last five (5) minutes, it MUST
  ignore the redirection and try to contact other DOTS servers listed
+
ignore the redirection and try to contact other DOTS servers listed
  in the local configuration or discovered using dynamic means such as
+
in the local configuration or discovered using dynamic means such as
  DHCP or SRV procedures [DOTS-SERVER-DISC].  It is RECOMMENDED that
+
DHCP or SRV procedures [DOTS-SERVER-DISC].  It is RECOMMENDED that
  DOTS clients support the means to alert administrators about redirect
+
DOTS clients support the means to alert administrators about redirect
  loops.
+
loops.
  
4.7.  Heartbeat Mechanism
+
=== Heartbeat Mechanism ===
  
  To provide an indication of signal health and to distinguish an
+
To provide an indication of signal health and to distinguish an
  'idle' signal channel from a 'disconnected' or 'defunct' session, the
+
'idle' signal channel from a 'disconnected' or 'defunct' session, the
  DOTS agent sends a heartbeat over the signal channel to maintain its
+
DOTS agent sends a heartbeat over the signal channel to maintain its
  half of the channel (also, aligned with the "consents" recommendation
+
half of the channel (also, aligned with the "consents" recommendation
  in Section 6 of [RFC8085]).  The DOTS agent similarly expects a
+
in Section 6 of [[RFC8085]]).  The DOTS agent similarly expects a
  heartbeat from its peer DOTS agent, and it may consider a session
+
heartbeat from its peer DOTS agent, and it may consider a session
  terminated in the prolonged absence of a peer agent heartbeat.
+
terminated in the prolonged absence of a peer agent heartbeat.
  Concretely, while the communication between the DOTS agents is
+
Concretely, while the communication between the DOTS agents is
  otherwise quiescent, the DOTS client will probe the DOTS server to
+
otherwise quiescent, the DOTS client will probe the DOTS server to
  ensure it has maintained cryptographic state and vice versa.  Such
+
ensure it has maintained cryptographic state and vice versa.  Such
  probes can also keep the bindings of firewalls and/or stateful
+
probes can also keep the bindings of firewalls and/or stateful
  translators alive.  This probing reduces the frequency of
+
translators alive.  This probing reduces the frequency of
  establishing a new handshake when a DOTS signal needs to be conveyed
+
establishing a new handshake when a DOTS signal needs to be conveyed
  to the DOTS server.
+
to the DOTS server.
  
      |  Implementation Note: Given that CoAP roles can be multiplexed
+
  |  Implementation Note: Given that CoAP roles can be multiplexed
      |  over the same session as discussed in [RFC7252] and are already
+
  |  over the same session as discussed in [[RFC7252]] and are already
      |  supported by CoAP implementations, both the DOTS client and
+
  |  supported by CoAP implementations, both the DOTS client and
      |  server can send DOTS heartbeat requests.
+
  |  server can send DOTS heartbeat requests.
  
  The DOTS heartbeat mechanism uses Non-confirmable PUT requests
+
The DOTS heartbeat mechanism uses Non-confirmable PUT requests
  (Figure 27) with an expected 2.04 (Changed) Response Code
+
(Figure 27) with an expected 2.04 (Changed) Response Code
  (Figure 28).  This procedure occurs between a DOTS agent and its
+
(Figure 28).  This procedure occurs between a DOTS agent and its
  immediate peer DOTS agent.  As such, this PUT request MUST NOT be
+
immediate peer DOTS agent.  As such, this PUT request MUST NOT be
  relayed by a DOTS gateway.  The PUT request used for DOTS heartbeat
+
relayed by a DOTS gateway.  The PUT request used for DOTS heartbeat
  MUST NOT have a 'cuid', 'cdid', or 'mid' Uri-Path.
+
MUST NOT have a 'cuid', 'cdid', or 'mid' Uri-Path.
  
        Header: PUT (Code=0.03)
+
    Header: PUT (Code=0.03)
        Uri-Path: ".well-known"
+
    Uri-Path: ".well-known"
        Uri-Path: "dots"
+
    Uri-Path: "dots"
        Uri-Path: "hb"
+
    Uri-Path: "hb"
        Content-Format: "application/dots+cbor"
+
    Content-Format: "application/dots+cbor"
  
        {
+
    {
          "ietf-dots-signal-channel:heartbeat": {
+
      "ietf-dots-signal-channel:heartbeat": {
            "peer-hb-status": true
+
          "peer-hb-status": true
          }
 
 
         }
 
         }
 +
    }
  
          Figure 27: PUT to Check Peer DOTS Agent Is Responding
+
        Figure 27: PUT to Check Peer DOTS Agent Is Responding
  
  The mandatory 'peer-hb-status' attribute is set to 'true' (or
+
The mandatory 'peer-hb-status' attribute is set to 'true' (or
  'false') to indicate that a DOTS agent is (or is not) receiving
+
'false') to indicate that a DOTS agent is (or is not) receiving
  heartbeat messages from its peer in the last (2 * 'heartbeat-
+
heartbeat messages from its peer in the last (2 * 'heartbeat-
  interval') period.  Such information can be used by a peer DOTS agent
+
interval') period.  Such information can be used by a peer DOTS agent
  to detect or confirm connectivity issues and react accordingly.  For
+
to detect or confirm connectivity issues and react accordingly.  For
  example, if a DOTS client receives a 2.04 response for its heartbeat
+
example, if a DOTS client receives a 2.04 response for its heartbeat
  messages but no server-initiated heartbeat messages, the DOTS client
+
messages but no server-initiated heartbeat messages, the DOTS client
  sets 'peer-hb-status' to 'false'.  The DOTS server then will need to
+
sets 'peer-hb-status' to 'false'.  The DOTS server then will need to
  try another strategy for sending the heartbeats (e.g., adjust the
+
try another strategy for sending the heartbeats (e.g., adjust the
  heartbeat interval or send a server-initiated heartbeat immediately
+
heartbeat interval or send a server-initiated heartbeat immediately
  after receiving a client-initiated heartbeat message).
+
after receiving a client-initiated heartbeat message).
  
        Header: (Code=2.04)
+
    Header: (Code=2.04)
  
              Figure 28: Response to a DOTS Heartbeat Request
+
          Figure 28: Response to a DOTS Heartbeat Request
  
  DOTS servers MAY trigger their heartbeat requests immediately after
+
DOTS servers MAY trigger their heartbeat requests immediately after
  receiving heartbeat probes from peer DOTS clients.  As a reminder, it
+
receiving heartbeat probes from peer DOTS clients.  As a reminder, it
  is the responsibility of DOTS clients to ensure that on-path
+
is the responsibility of DOTS clients to ensure that on-path
  translators/firewalls are maintaining a binding so that the same
+
translators/firewalls are maintaining a binding so that the same
  external IP address and/or port number is retained for the DOTS
+
external IP address and/or port number is retained for the DOTS
  signal channel session.
+
signal channel session.
  
  Under normal traffic conditions (i.e., no attack is ongoing), if a
+
Under normal traffic conditions (i.e., no attack is ongoing), if a
  DOTS agent does not receive any response from the peer DOTS agent for
+
DOTS agent does not receive any response from the peer DOTS agent for
  'missing-hb-allowed' number of consecutive heartbeat messages, it
+
'missing-hb-allowed' number of consecutive heartbeat messages, it
  concludes that the DOTS signal channel session is disconnected.  The
+
concludes that the DOTS signal channel session is disconnected.  The
  DOTS client MUST then try to reestablish the DOTS signal channel
+
DOTS client MUST then try to reestablish the DOTS signal channel
  session, preferably by resuming the (D)TLS session.
+
session, preferably by resuming the (D)TLS session.
  
      |  Note: If a new DOTS signal channel session cannot be
+
  |  Note: If a new DOTS signal channel session cannot be
      |  established, the DOTS client SHOULD NOT retry to establish the
+
  |  established, the DOTS client SHOULD NOT retry to establish the
      |  DOTS signal channel session more frequently than every 300
+
  |  DOTS signal channel session more frequently than every 300
      |  seconds (5 minutes) and MUST NOT retry more frequently than
+
  |  seconds (5 minutes) and MUST NOT retry more frequently than
      |  every 60 seconds (1 minute).  It is recommended that DOTS
+
  |  every 60 seconds (1 minute).  It is recommended that DOTS
      |  clients support the means to alert administrators about the
+
  |  clients support the means to alert administrators about the
      |  failure to establish a (D)TLS session.
+
  |  failure to establish a (D)TLS session.
  
  In case of a massive DDoS attack that saturates the incoming link(s)
+
In case of a massive DDoS attack that saturates the incoming link(s)
  to the DOTS client, all traffic from the DOTS server to the DOTS
+
to the DOTS client, all traffic from the DOTS server to the DOTS
  client will likely be dropped, although the DOTS server receives
+
client will likely be dropped, although the DOTS server receives
  heartbeat requests in addition to DOTS messages sent by the DOTS
+
heartbeat requests in addition to DOTS messages sent by the DOTS
  client.  In this scenario, DOTS clients MUST behave differently to
+
client.  In this scenario, DOTS clients MUST behave differently to
  handle message transmission and DOTS signal channel session
+
handle message transmission and DOTS signal channel session
  liveliness during link saturation:
+
liveliness during link saturation:
  
      The DOTS client MUST NOT consider the DOTS signal channel session
+
  The DOTS client MUST NOT consider the DOTS signal channel session
      terminated even after a maximum 'missing-hb-allowed' threshold is
+
  terminated even after a maximum 'missing-hb-allowed' threshold is
      reached.  The DOTS client SHOULD keep on using the current DOTS
+
  reached.  The DOTS client SHOULD keep on using the current DOTS
      signal channel session to send heartbeat requests over it, so that
+
  signal channel session to send heartbeat requests over it, so that
      the DOTS server knows the DOTS client has not disconnected the
+
  the DOTS server knows the DOTS client has not disconnected the
      DOTS signal channel session.
+
  DOTS signal channel session.
  
      After the maximum 'missing-hb-allowed' threshold is reached, the
+
  After the maximum 'missing-hb-allowed' threshold is reached, the
      DOTS client SHOULD try to establish a new DOTS signal channel
+
  DOTS client SHOULD try to establish a new DOTS signal channel
      session.  The DOTS client SHOULD send mitigation requests over the
+
  session.  The DOTS client SHOULD send mitigation requests over the
      current DOTS signal channel session and, in parallel, send the
+
  current DOTS signal channel session and, in parallel, send the
      mitigation requests over the new DOTS signal channel session.
+
  mitigation requests over the new DOTS signal channel session.
      This may be handled, for example, by resumption of the (D)TLS
+
  This may be handled, for example, by resumption of the (D)TLS
      session or using 0-RTT mode in DTLS 1.3 to piggyback the
+
  session or using 0-RTT mode in DTLS 1.3 to piggyback the
      mitigation request in the ClientHello message.
+
  mitigation request in the ClientHello message.
  
      As soon as the link is no longer saturated, if traffic from the
+
  As soon as the link is no longer saturated, if traffic from the
      DOTS server reaches the DOTS client over the current DOTS signal
+
  DOTS server reaches the DOTS client over the current DOTS signal
      channel session, the DOTS client can stop the new DOTS signal
+
  channel session, the DOTS client can stop the new DOTS signal
      channel session attempt or if a new DOTS signal channel session is
+
  channel session attempt or if a new DOTS signal channel session is
      successful then disconnect the current DOTS signal channel
+
  successful then disconnect the current DOTS signal channel
      session.
+
  session.
  
  If the DOTS server receives traffic from the peer DOTS client (e.g.,
+
If the DOTS server receives traffic from the peer DOTS client (e.g.,
  peer DOTS client-initiated heartbeats) but the maximum 'missing-hb-
+
peer DOTS client-initiated heartbeats) but the maximum 'missing-hb-
  allowed' threshold is reached, the DOTS server MUST NOT consider the
+
allowed' threshold is reached, the DOTS server MUST NOT consider the
  DOTS signal channel session disconnected.  The DOTS server MUST keep
+
DOTS signal channel session disconnected.  The DOTS server MUST keep
  on using the current DOTS signal channel session so that the DOTS
+
on using the current DOTS signal channel session so that the DOTS
  client can send mitigation requests over the current DOTS signal
+
client can send mitigation requests over the current DOTS signal
  channel session.  In this case, the DOTS server can identify that the
+
channel session.  In this case, the DOTS server can identify that the
  DOTS client is under attack and that the inbound link to the DOTS
+
DOTS client is under attack and that the inbound link to the DOTS
  client (domain) is saturated.  Furthermore, if the DOTS server does
+
client (domain) is saturated.  Furthermore, if the DOTS server does
  not receive a mitigation request from the DOTS client, it implies
+
not receive a mitigation request from the DOTS client, it implies
  that the DOTS client has not detected the attack or, if an attack
+
that the DOTS client has not detected the attack or, if an attack
  mitigation is in progress, it implies that the applied DDoS
+
mitigation is in progress, it implies that the applied DDoS
  mitigation actions are not yet effectively handling the DDoS attack
+
mitigation actions are not yet effectively handling the DDoS attack
  volume.
+
volume.
  
  If the DOTS server does not receive any traffic from the peer DOTS
+
If the DOTS server does not receive any traffic from the peer DOTS
  client during the time span required to exhaust the maximum 'missing-
+
client during the time span required to exhaust the maximum 'missing-
  hb-allowed' threshold, the DOTS server concludes the session is
+
hb-allowed' threshold, the DOTS server concludes the session is
  disconnected.  The DOTS server can then trigger preconfigured
+
disconnected.  The DOTS server can then trigger preconfigured
  mitigation requests for this DOTS client (if any).
+
mitigation requests for this DOTS client (if any).
  
  In DOTS over TCP, the sender of a DOTS heartbeat message has to allow
+
In DOTS over TCP, the sender of a DOTS heartbeat message has to allow
  up to 'heartbeat-interval' seconds when waiting for a heartbeat
+
up to 'heartbeat-interval' seconds when waiting for a heartbeat
  reply.  When a failure is detected by a DOTS client, it proceeds with
+
reply.  When a failure is detected by a DOTS client, it proceeds with
  the session recovery, following the same approach as the one used for
+
the session recovery, following the same approach as the one used for
  unreliable transports.
+
unreliable transports.
  
5.  DOTS Signal Channel YANG Modules
+
== DOTS Signal Channel YANG Modules ==
  
  This document defines a YANG module [RFC7950] for DOTS mitigation
+
This document defines a YANG module [[RFC7950]] for DOTS mitigation
  scope, DOTS signal channel session configuration data, DOTS
+
scope, DOTS signal channel session configuration data, DOTS
  redirection signaling, and DOTS heartbeats.
+
redirection signaling, and DOTS heartbeats.
  
  This YANG module (ietf-dots-signal-channel) defines the DOTS client
+
This YANG module (ietf-dots-signal-channel) defines the DOTS client
  interaction with the DOTS server as seen by the DOTS client.  A DOTS
+
interaction with the DOTS server as seen by the DOTS client.  A DOTS
  server is allowed to update the non-configurable 'ro' entities in the
+
server is allowed to update the non-configurable 'ro' entities in the
  responses.  This YANG module is not intended to be used via NETCONF/
+
responses.  This YANG module is not intended to be used via NETCONF/
  RESTCONF for DOTS server management purposes; such a module is out of
+
RESTCONF for DOTS server management purposes; such a module is out of
  the scope of this document.  It serves only to provide a data model
+
the scope of this document.  It serves only to provide a data model
  and encoding, but not a management data model.
+
and encoding, but not a management data model.
  
  A companion YANG module is defined to include a collection of types
+
A companion YANG module is defined to include a collection of types
  defined by IANA: "iana-dots-signal-channel" (Section 5.2).
+
defined by IANA: "iana-dots-signal-channel" (Section 5.2).
  
5.1.  Tree Structure
+
=== Tree Structure ===
  
  This document defines the YANG module "ietf-dots-signal-channel"
+
This document defines the YANG module "ietf-dots-signal-channel"
  (Section 5.3), which has the following tree structure.  A DOTS signal
+
(Section 5.3), which has the following tree structure.  A DOTS signal
  message can be a mitigation, a configuration, a redirect, or a
+
message can be a mitigation, a configuration, a redirect, or a
  heartbeat message.
+
heartbeat message.
  
  module: ietf-dots-signal-channel
+
module: ietf-dots-signal-channel
    +--rw dots-signal
+
  +--rw dots-signal
        +--rw (message-type)?
+
    +--rw (message-type)?
          +--:(mitigation-scope)
+
        +--:(mitigation-scope)
          |  +--rw scope* [cuid mid]
+
        |  +--rw scope* [cuid mid]
          |    +--rw cdid?                  string
+
        |    +--rw cdid?                  string
          |    +--rw cuid                    string
+
        |    +--rw cuid                    string
          |    +--rw mid                    uint32
+
        |    +--rw mid                    uint32
          |    +--rw target-prefix*          inet:ip-prefix
+
        |    +--rw target-prefix*          inet:ip-prefix
          |    +--rw target-port-range*      [lower-port]
+
        |    +--rw target-port-range*      [lower-port]
          |    |  +--rw lower-port    inet:port-number
+
        |    |  +--rw lower-port    inet:port-number
          |    |  +--rw upper-port?  inet:port-number
+
        |    |  +--rw upper-port?  inet:port-number
          |    +--rw target-protocol*        uint8
+
        |    +--rw target-protocol*        uint8
          |    +--rw target-fqdn*            inet:domain-name
+
        |    +--rw target-fqdn*            inet:domain-name
          |    +--rw target-uri*            inet:uri
+
        |    +--rw target-uri*            inet:uri
          |    +--rw alias-name*            string
+
        |    +--rw alias-name*            string
          |    +--rw lifetime?              int32
+
        |    +--rw lifetime?              int32
          |    +--rw trigger-mitigation?    boolean
+
        |    +--rw trigger-mitigation?    boolean
          |    +--ro mitigation-start?      uint64
+
        |    +--ro mitigation-start?      uint64
          |    +--ro status?                iana-signal:status
+
        |    +--ro status?                iana-signal:status
          |    +--ro conflict-information
+
        |    +--ro conflict-information
          |    |  +--ro conflict-status?  iana-signal:conflict-status
+
        |    |  +--ro conflict-status?  iana-signal:conflict-status
          |    |  +--ro conflict-cause?    iana-signal:conflict-cause
+
        |    |  +--ro conflict-cause?    iana-signal:conflict-cause
          |    |  +--ro retry-timer?      uint32
+
        |    |  +--ro retry-timer?      uint32
          |    |  +--ro conflict-scope
+
        |    |  +--ro conflict-scope
          |    |    +--ro target-prefix*      inet:ip-prefix
+
        |    |    +--ro target-prefix*      inet:ip-prefix
          |    |    +--ro target-port-range*  [lower-port]
+
        |    |    +--ro target-port-range*  [lower-port]
          |    |    |  +--ro lower-port      inet:port-number
+
        |    |    |  +--ro lower-port      inet:port-number
          |    |    |  +--ro upper-port?    inet:port-number
+
        |    |    |  +--ro upper-port?    inet:port-number
          |    |    +--ro target-protocol*    uint8
+
        |    |    +--ro target-protocol*    uint8
          |    |    +--ro target-fqdn*        inet:domain-name
+
        |    |    +--ro target-fqdn*        inet:domain-name
          |    |    +--ro target-uri*          inet:uri
+
        |    |    +--ro target-uri*          inet:uri
          |    |    +--ro alias-name*          string
+
        |    |    +--ro alias-name*          string
          |    |    +--ro acl-list* [acl-name]
+
        |    |    +--ro acl-list* [acl-name]
          |    |    |  +--ro acl-name
+
        |    |    |  +--ro acl-name
          |    |    |  |  -> /ietf-data:dots-data/dots-client/acls/
+
        |    |    |  |  -> /ietf-data:dots-data/dots-client/acls/
          |    |    |  |      acl/name
+
        |    |    |  |      acl/name
          |    |    |  +--ro acl-type?
+
        |    |    |  +--ro acl-type?
          |    |    |      -> /ietf-data:dots-data/dots-client/acls/
+
        |    |    |      -> /ietf-data:dots-data/dots-client/acls/
          |    |    |        acl/type
+
        |    |    |        acl/type
          |    |    +--ro mid?                -> ../../../mid
+
        |    |    +--ro mid?                -> ../../../mid
          |    +--ro bytes-dropped?          yang:zero-based-counter64
+
        |    +--ro bytes-dropped?          yang:zero-based-counter64
          |    +--ro bps-dropped?            yang:gauge64
+
        |    +--ro bps-dropped?            yang:gauge64
          |    +--ro pkts-dropped?          yang:zero-based-counter64
+
        |    +--ro pkts-dropped?          yang:zero-based-counter64
          |    +--ro pps-dropped?            yang:gauge64
+
        |    +--ro pps-dropped?            yang:gauge64
          |    +--rw attack-status?          iana-signal:attack-status
+
        |    +--rw attack-status?          iana-signal:attack-status
          +--:(signal-config)
+
        +--:(signal-config)
          |  +--rw sid                  uint32
+
        |  +--rw sid                  uint32
          |  +--rw mitigating-config
+
        |  +--rw mitigating-config
          |  |  +--rw heartbeat-interval
+
        |  |  +--rw heartbeat-interval
          |  |  |  +--ro max-value?      uint16
+
        |  |  |  +--ro max-value?      uint16
          |  |  |  +--ro min-value?      uint16
+
        |  |  |  +--ro min-value?      uint16
          |  |  |  +--rw current-value?  uint16
+
        |  |  |  +--rw current-value?  uint16
          |  |  +--rw missing-hb-allowed
+
        |  |  +--rw missing-hb-allowed
          |  |  |  +--ro max-value?      uint16
+
        |  |  |  +--ro max-value?      uint16
          |  |  |  +--ro min-value?      uint16
+
        |  |  |  +--ro min-value?      uint16
          |  |  |  +--rw current-value?  uint16
+
        |  |  |  +--rw current-value?  uint16
          |  |  +--rw probing-rate
+
        |  |  +--rw probing-rate
          |  |  |  +--ro max-value?      uint16
+
        |  |  |  +--ro max-value?      uint16
          |  |  |  +--ro min-value?      uint16
+
        |  |  |  +--ro min-value?      uint16
          |  |  |  +--rw current-value?  uint16
+
        |  |  |  +--rw current-value?  uint16
          |  |  +--rw max-retransmit
+
        |  |  +--rw max-retransmit
          |  |  |  +--ro max-value?      uint16
+
        |  |  |  +--ro max-value?      uint16
          |  |  |  +--ro min-value?      uint16
+
        |  |  |  +--ro min-value?      uint16
          |  |  |  +--rw current-value?  uint16
+
        |  |  |  +--rw current-value?  uint16
          |  |  +--rw ack-timeout
+
        |  |  +--rw ack-timeout
          |  |  |  +--ro max-value-decimal?      decimal64
+
        |  |  |  +--ro max-value-decimal?      decimal64
          |  |  |  +--ro min-value-decimal?      decimal64
+
        |  |  |  +--ro min-value-decimal?      decimal64
          |  |  |  +--rw current-value-decimal?  decimal64
+
        |  |  |  +--rw current-value-decimal?  decimal64
          |  |  +--rw ack-random-factor
+
        |  |  +--rw ack-random-factor
          |  |    +--ro max-value-decimal?      decimal64
+
        |  |    +--ro max-value-decimal?      decimal64
          |  |    +--ro min-value-decimal?      decimal64
+
        |  |    +--ro min-value-decimal?      decimal64
          |  |    +--rw current-value-decimal?  decimal64
+
        |  |    +--rw current-value-decimal?  decimal64
          |  +--rw idle-config
+
        |  +--rw idle-config
          |    +--rw heartbeat-interval
+
        |    +--rw heartbeat-interval
          |    |  +--ro max-value?      uint16
+
        |    |  +--ro max-value?      uint16
          |    |  +--ro min-value?      uint16
+
        |    |  +--ro min-value?      uint16
          |    |  +--rw current-value?  uint16
+
        |    |  +--rw current-value?  uint16
          |    +--rw missing-hb-allowed
+
        |    +--rw missing-hb-allowed
          |    |  +--ro max-value?      uint16
+
        |    |  +--ro max-value?      uint16
          |    |  +--ro min-value?      uint16
+
        |    |  +--ro min-value?      uint16
          |    |  +--rw current-value?  uint16
+
        |    |  +--rw current-value?  uint16
          |    +--rw probing-rate
+
        |    +--rw probing-rate
          |    |  +--ro max-value?      uint16
+
        |    |  +--ro max-value?      uint16
          |    |  +--ro min-value?      uint16
+
        |    |  +--ro min-value?      uint16
          |    |  +--rw current-value?  uint16
+
        |    |  +--rw current-value?  uint16
          |    +--rw max-retransmit
+
        |    +--rw max-retransmit
          |    |  +--ro max-value?      uint16
+
        |    |  +--ro max-value?      uint16
          |    |  +--ro min-value?      uint16
+
        |    |  +--ro min-value?      uint16
          |    |  +--rw current-value?  uint16
+
        |    |  +--rw current-value?  uint16
          |    +--rw ack-timeout
+
        |    +--rw ack-timeout
          |    |  +--ro max-value-decimal?      decimal64
+
        |    |  +--ro max-value-decimal?      decimal64
          |    |  +--ro min-value-decimal?      decimal64
+
        |    |  +--ro min-value-decimal?      decimal64
          |    |  +--rw current-value-decimal?  decimal64
+
        |    |  +--rw current-value-decimal?  decimal64
          |    +--rw ack-random-factor
+
        |    +--rw ack-random-factor
          |        +--ro max-value-decimal?      decimal64
+
        |        +--ro max-value-decimal?      decimal64
          |        +--ro min-value-decimal?      decimal64
+
        |        +--ro min-value-decimal?      decimal64
          |        +--rw current-value-decimal?  decimal64
+
        |        +--rw current-value-decimal?  decimal64
          +--:(redirected-signal)
+
        +--:(redirected-signal)
          |  +--ro alt-server            string
+
        |  +--ro alt-server            string
          |  +--ro alt-server-record*    inet:ip-address
+
        |  +--ro alt-server-record*    inet:ip-address
          +--:(heartbeat)
+
        +--:(heartbeat)
              +--rw peer-hb-status              boolean
+
          +--rw peer-hb-status              boolean
  
5.2.  IANA DOTS Signal Channel YANG Module
+
=== IANA DOTS Signal Channel YANG Module ===
  
  <CODE BEGINS> file "[email protected]"
+
<CODE BEGINS> file "[email protected]"
  module iana-dots-signal-channel {
+
module iana-dots-signal-channel {
    yang-version 1.1;
+
  yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:iana-dots-signal-channel";
+
  namespace "urn:ietf:params:xml:ns:yang:iana-dots-signal-channel";
    prefix iana-signal;
+
  prefix iana-signal;
  
    organization
+
  organization
      "IANA";
+
    "IANA";
    contact
+
  contact
      "Internet Assigned Numbers Authority
+
    "Internet Assigned Numbers Authority
  
        Postal: ICANN
+
    Postal: ICANN
            12025 Waterfront Drive, Suite 300
+
          12025 Waterfront Drive, Suite 300
            Los Angeles, CA  90094-2536
+
          Los Angeles, CA  90094-2536
            United States of America
+
          United States of America
        Tel:    +1 310 301 5800
+
    Tel:    +1 310 301 5800
        <mailto:[email protected]>";
+
    <mailto:[email protected]>";
    description
+
  description
      "This module contains a collection of YANG data types defined
+
    "This module contains a collection of YANG data types defined
        by IANA and used for DOTS signal channel protocol.
+
    by IANA and used for DOTS signal channel protocol.
  
        Copyright (c) 2020 IETF Trust and the persons identified as
+
    Copyright (c) 2020 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.
+
    authors of the code.  All rights reserved.
  
        Redistribution and use in source and binary forms, with or
+
    Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
+
    without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Simplified BSD License
+
    to the license terms contained in, the Simplified BSD License
        set forth in Section 4.c of the IETF Trust's Legal Provisions
+
    set forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
+
    Relating to IETF Documents
        (http://trustee.ietf.org/license-info).
+
    (http://trustee.ietf.org/license-info).
  
        This version of this YANG module is part of RFC 8782; see
+
    This version of this YANG module is part of [[RFC8782|RFC 8782]]; see
        the RFC itself for full legal notices.";
+
    the RFC itself for full legal notices.";
  
    revision 2020-05-28 {
+
  revision 2020-05-28 {
      description
+
    description
        "Initial revision.";
+
      "Initial revision.";
      reference
+
    reference
        "RFC 8782: Distributed Denial-of-Service Open Threat
+
      "[[RFC8782|RFC 8782]]: Distributed Denial-of-Service Open Threat
                    Signaling (DOTS) Signal Channel Specification";
+
                Signaling (DOTS) Signal Channel Specification";
    }
+
  }
  
    typedef status {
+
  typedef status {
      type enumeration {
+
    type enumeration {
        enum attack-mitigation-in-progress {
+
      enum attack-mitigation-in-progress {
          value 1;
+
        value 1;
          description
+
        description
            "Attack mitigation setup is in progress (e.g., changing
+
          "Attack mitigation setup is in progress (e.g., changing
              the network path to reroute the inbound traffic
+
          the network path to reroute the inbound traffic
              to DOTS mitigator).";
+
          to DOTS mitigator).";
        }
+
      }
        enum attack-successfully-mitigated {
+
      enum attack-successfully-mitigated {
          value 2;
+
        value 2;
          description
+
        description
            "Attack is being successfully mitigated (e.g., traffic
+
          "Attack is being successfully mitigated (e.g., traffic
              is redirected to a DDoS mitigator and attack
+
          is redirected to a DDoS mitigator and attack
              traffic is dropped or blackholed).";
+
          traffic is dropped or blackholed).";
        }
+
      }
        enum attack-stopped {
+
      enum attack-stopped {
          value 3;
+
        value 3;
          description
+
        description
            "Attack has stopped and the DOTS client can
+
          "Attack has stopped and the DOTS client can
              withdraw the mitigation request.";
+
          withdraw the mitigation request.";
        }
+
      }
        enum attack-exceeded-capability {
+
      enum attack-exceeded-capability {
          value 4;
+
        value 4;
          description
+
        description
            "Attack has exceeded the mitigation provider
+
          "Attack has exceeded the mitigation provider
              capability.";
+
          capability.";
        }
+
      }
        enum dots-client-withdrawn-mitigation {
+
      enum dots-client-withdrawn-mitigation {
          value 5;
+
        value 5;
          description
+
        description
            "DOTS client has withdrawn the mitigation
+
          "DOTS client has withdrawn the mitigation
              request and the mitigation is active but
+
          request and the mitigation is active but
              terminating.";
+
          terminating.";
        }
+
      }
        enum attack-mitigation-terminated {
+
      enum attack-mitigation-terminated {
          value 6;
+
        value 6;
          description
+
        description
            "Attack mitigation is now terminated.";
+
          "Attack mitigation is now terminated.";
        }
+
      }
        enum attack-mitigation-withdrawn {
+
      enum attack-mitigation-withdrawn {
          value 7;
+
        value 7;
          description
+
        description
            "Attack mitigation is withdrawn.";
+
          "Attack mitigation is withdrawn.";
        }
+
      }
        enum attack-mitigation-signal-loss {
+
      enum attack-mitigation-signal-loss {
          value 8;
+
        value 8;
          description
+
        description
            "Attack mitigation will be triggered
+
          "Attack mitigation will be triggered
              for the mitigation request only when
+
          for the mitigation request only when
              the DOTS signal channel session is lost.";
+
          the DOTS signal channel session is lost.";
        }
+
      }
      }
+
    }
      description
+
    description
        "Enumeration for status reported by the DOTS server.";
+
      "Enumeration for status reported by the DOTS server.";
    }
+
  }
  
    typedef conflict-status {
+
  typedef conflict-status {
      type enumeration {
+
    type enumeration {
        enum request-inactive-other-active {
+
      enum request-inactive-other-active {
          value 1;
+
        value 1;
          description
+
        description
            "DOTS Server has detected conflicting mitigation
+
          "DOTS Server has detected conflicting mitigation
              requests from different DOTS clients.
+
          requests from different DOTS clients.
              This mitigation request is currently inactive
+
          This mitigation request is currently inactive
              until the conflicts are resolved. Another
+
          until the conflicts are resolved. Another
              mitigation request is active.";
+
          mitigation request is active.";
        }
+
      }
        enum request-active {
+
      enum request-active {
          value 2;
+
        value 2;
          description
+
        description
            "DOTS Server has detected conflicting mitigation
+
          "DOTS Server has detected conflicting mitigation
              requests from different DOTS clients.
+
          requests from different DOTS clients.
              This mitigation request is currently active.";
+
          This mitigation request is currently active.";
        }
+
      }
        enum all-requests-inactive {
+
      enum all-requests-inactive {
          value 3;
+
        value 3;
          description
+
        description
            "DOTS Server has detected conflicting mitigation
+
          "DOTS Server has detected conflicting mitigation
              requests from different DOTS clients.  All
+
          requests from different DOTS clients.  All
              conflicting mitigation requests are inactive.";
+
          conflicting mitigation requests are inactive.";
        }
+
      }
      }
+
    }
      description
+
    description
        "Enumeration for conflict status.";
+
      "Enumeration for conflict status.";
    }
+
  }
  
    typedef conflict-cause {
+
  typedef conflict-cause {
      type enumeration {
+
    type enumeration {
        enum overlapping-targets {
+
      enum overlapping-targets {
          value 1;
+
        value 1;
          description
+
        description
            "Overlapping targets. conflict-scope provides
+
          "Overlapping targets. conflict-scope provides
              more details about the exact conflict.";
+
          more details about the exact conflict.";
        }
+
      }
        enum conflict-with-acceptlist {
+
      enum conflict-with-acceptlist {
          value 2;
+
        value 2;
          description
+
        description
            "Conflicts with an existing accept-list.
+
          "Conflicts with an existing accept-list.
  
              This code is returned when the DDoS mitigation
+
          This code is returned when the DDoS mitigation
              detects that some of the source addresses/prefixes
+
          detects that some of the source addresses/prefixes
              listed in the accept-list ACLs are actually
+
          listed in the accept-list ACLs are actually
              attacking the target.";
+
          attacking the target.";
        }
+
      }
        enum cuid-collision {
+
      enum cuid-collision {
          value 3;
+
        value 3;
          description
+
        description
            "Conflicts with the cuid used by another
+
          "Conflicts with the cuid used by another
              DOTS client.";
+
          DOTS client.";
        }
+
      }
      }
+
    }
      description
+
    description
        "Enumeration for conflict causes.";
+
      "Enumeration for conflict causes.";
    }
+
  }
  
    typedef attack-status {
+
  typedef attack-status {
      type enumeration {
+
    type enumeration {
        enum under-attack {
+
      enum under-attack {
          value 1;
+
        value 1;
          description
+
        description
            "The DOTS client determines that it is still under
+
          "The DOTS client determines that it is still under
              attack.";
+
          attack.";
        }
+
      }
        enum attack-successfully-mitigated {
+
      enum attack-successfully-mitigated {
          value 2;
+
        value 2;
          description
+
        description
            "The DOTS client determines that the attack is
+
          "The DOTS client determines that the attack is
              successfully mitigated.";
+
          successfully mitigated.";
        }
+
      }
      }
+
    }
      description
+
    description
        "Enumeration for attack status codes.";
+
      "Enumeration for attack status codes.";
    }
+
  }
  }
+
}
  <CODE ENDS>
+
<CODE ENDS>
  
5.3.  IETF DOTS Signal Channel YANG Module
+
=== IETF DOTS Signal Channel YANG Module ===
  
  This module uses the common YANG types defined in [RFC6991] and types
+
This module uses the common YANG types defined in [[RFC6991]] and types
  defined in [RFC8783].
+
defined in [[RFC8783]].
  
  <CODE BEGINS> file "[email protected]"
+
<CODE BEGINS> file "[email protected]"
  module ietf-dots-signal-channel {
+
module ietf-dots-signal-channel {
    yang-version 1.1;
+
  yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-dots-signal-channel";
+
  namespace "urn:ietf:params:xml:ns:yang:ietf-dots-signal-channel";
    prefix signal;
+
  prefix signal;
  
    import ietf-inet-types {
+
  import ietf-inet-types {
      prefix inet;
+
    prefix inet;
      reference
+
    reference
        "Section 4 of RFC 6991";
+
      "Section 4 of [[RFC6991|RFC 6991]]";
    }
+
  }
    import ietf-yang-types {
+
  import ietf-yang-types {
      prefix yang;
+
    prefix yang;
      reference
+
    reference
        "Section 3 of RFC 6991";
+
      "Section 3 of [[RFC6991|RFC 6991]]";
    }
+
  }
    import ietf-dots-data-channel {
+
  import ietf-dots-data-channel {
      prefix ietf-data;
+
    prefix ietf-data;
      reference
+
    reference
        "RFC 8783: Distributed Denial-of-Service Open Threat Signaling
+
      "[[RFC8783|RFC 8783]]: Distributed Denial-of-Service Open Threat Signaling
                    (DOTS) Data Channel Specification";
+
                (DOTS) Data Channel Specification";
    }
+
  }
    import iana-dots-signal-channel {
+
  import iana-dots-signal-channel {
      prefix iana-signal;
+
    prefix iana-signal;
    }
+
  }
  
    organization
+
  organization
      "IETF DDoS Open Threat Signaling (DOTS) Working Group";
+
    "IETF DDoS Open Threat Signaling (DOTS) Working Group";
    contact
+
  contact
      "WG Web:  <https://datatracker.ietf.org/wg/dots/>
+
    "WG Web:  <https://datatracker.ietf.org/wg/dots/>
        WG List:  <mailto:[email protected]>
+
    WG List:  <mailto:[email protected]>
  
        Editor:  Konda, Tirumaleswar Reddy.K
+
    Editor:  Konda, Tirumaleswar Reddy.K
                <mailto:[email protected]>
+
              <mailto:[email protected]>
  
        Editor:  Mohamed Boucadair
+
    Editor:  Mohamed Boucadair
                <mailto:[email protected]>
+
              <mailto:[email protected]>
  
        Author:  Prashanth Patil
+
    Author:  Prashanth Patil
                <mailto:[email protected]>
+
              <mailto:[email protected]>
  
        Author:  Andrew Mortensen
+
    Author:  Andrew Mortensen
                <mailto:[email protected]>
+
              <mailto:[email protected]>
  
        Author:  Nik Teague
+
    Author:  Nik Teague
                <mailto:[email protected]>";
+
              <mailto:[email protected]>";
    description
+
  description
      "This module contains YANG definition for the signaling
+
    "This module contains YANG definition for the signaling
        messages exchanged between a DOTS client and a DOTS server.
+
    messages exchanged between a DOTS client and a DOTS server.
  
        Copyright (c) 2020 IETF Trust and the persons identified as
+
    Copyright (c) 2020 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.
+
    authors of the code.  All rights reserved.
  
        Redistribution and use in source and binary forms, with or
+
    Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
+
    without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Simplified BSD License
+
    to the license terms contained in, the Simplified BSD License
        set forth in Section 4.c of the IETF Trust's Legal Provisions
+
    set forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
+
    Relating to IETF Documents
        (http://trustee.ietf.org/license-info).
+
    (http://trustee.ietf.org/license-info).
  
        This version of this YANG module is part of RFC 8782; see
+
    This version of this YANG module is part of [[RFC8782|RFC 8782]]; see
        the RFC itself for full legal notices.";
+
    the RFC itself for full legal notices.";
  
    revision 2020-05-28 {
+
  revision 2020-05-28 {
      description
+
    description
        "Initial revision.";
+
      "Initial revision.";
      reference
+
    reference
        "RFC 8782: Distributed Denial-of-Service Open Threat
+
      "[[RFC8782|RFC 8782]]: Distributed Denial-of-Service Open Threat
                    Signaling (DOTS) Signal Channel Specification";
+
                Signaling (DOTS) Signal Channel Specification";
    }
+
  }
  
    /*
+
  /*
      * Groupings
+
  * Groupings
      */
+
  */
  
    grouping mitigation-scope {
+
  grouping mitigation-scope {
      description
+
    description
        "Specifies the scope of the mitigation request.";
+
      "Specifies the scope of the mitigation request.";
      list scope {
+
    list scope {
        key "cuid mid";
+
      key "cuid mid";
        description
+
      description
          "The scope of the request.";
+
        "The scope of the request.";
        leaf cdid {
+
      leaf cdid {
          type string;
+
        type string;
          description
+
        description
            "The cdid should be included by a server-domain
+
          "The cdid should be included by a server-domain
              DOTS gateway to propagate the client domain
+
          DOTS gateway to propagate the client domain
              identification information from the
+
          identification information from the
              gateway's client-facing side to the gateway's
+
          gateway's client-facing side to the gateway's
              server-facing side, and from the gateway's
+
          server-facing side, and from the gateway's
              server-facing side to the DOTS server.
+
          server-facing side to the DOTS server.
  
              It may be used by the final DOTS server
+
          It may be used by the final DOTS server
              for policy enforcement purposes.";
+
          for policy enforcement purposes.";
        }
+
      }
        leaf cuid {
+
      leaf cuid {
          type string;
+
        type string;
          description
+
        description
            "A unique identifier that is
+
          "A unique identifier that is
              generated by a DOTS client to prevent
+
          generated by a DOTS client to prevent
              request collisions.  It is expected that the
+
          request collisions.  It is expected that the
              cuid will remain consistent throughout the
+
          cuid will remain consistent throughout the
              lifetime of the DOTS client.";
+
          lifetime of the DOTS client.";
        }
+
      }
        leaf mid {
+
      leaf mid {
          type uint32;
+
        type uint32;
          description
+
        description
            "Mitigation request identifier.
+
          "Mitigation request identifier.
  
              This identifier must be unique for each mitigation
+
          This identifier must be unique for each mitigation
              request bound to the DOTS client.";
+
          request bound to the DOTS client.";
        }
+
      }
        uses ietf-data:target;
+
      uses ietf-data:target;
        leaf-list alias-name {
+
      leaf-list alias-name {
          type string;
+
        type string;
          description
+
        description
            "An alias name that points to a resource.";
+
          "An alias name that points to a resource.";
        }
+
      }
        leaf lifetime {
+
      leaf lifetime {
          type int32;
+
        type int32;
          units "seconds";
+
        units "seconds";
          default "3600";
+
        default "3600";
          description
+
        description
            "Indicates the lifetime of the mitigation request.
+
          "Indicates the lifetime of the mitigation request.
  
              A lifetime of '0' in a mitigation request is an
+
          A lifetime of '0' in a mitigation request is an
              invalid value.
+
          invalid value.
  
              A lifetime of negative one (-1) indicates indefinite
+
          A lifetime of negative one (-1) indicates indefinite
              lifetime for the mitigation request.";
+
          lifetime for the mitigation request.";
        }
+
      }
        leaf trigger-mitigation {
+
      leaf trigger-mitigation {
          type boolean;
+
        type boolean;
          default "true";
+
        default "true";
          description
+
        description
            "If set to 'false', DDoS mitigation will not be
+
          "If set to 'false', DDoS mitigation will not be
              triggered unless the DOTS signal channel
+
          triggered unless the DOTS signal channel
              session is lost.";
+
          session is lost.";
        }
+
      }
        leaf mitigation-start {
+
      leaf mitigation-start {
          type uint64;
+
        type uint64;
          config false;
+
        config false;
          description
+
        description
            "Mitigation start time is represented in seconds
+
          "Mitigation start time is represented in seconds
              relative to 1970-01-01T00:00:00Z in UTC time.";
+
          relative to 1970-01-01T00:00:00Z in UTC time.";
        }
+
      }
        leaf status {
+
      leaf status {
          type iana-signal:status;
+
        type iana-signal:status;
          config false;
+
        config false;
          description
+
        description
            "Indicates the status of a mitigation request.
+
          "Indicates the status of a mitigation request.
              It must be included in responses only.";
+
          It must be included in responses only.";
        }
+
      }
        container conflict-information {
+
      container conflict-information {
          config false;
+
        config false;
          description
+
        description
            "Indicates that a conflict is detected.
+
          "Indicates that a conflict is detected.
              Must only be used for responses.";
+
          Must only be used for responses.";
          leaf conflict-status {
+
        leaf conflict-status {
            type iana-signal:conflict-status;
+
          type iana-signal:conflict-status;
            description
+
          description
              "Indicates the conflict status.";
+
            "Indicates the conflict status.";
          }
+
        }
          leaf conflict-cause {
+
        leaf conflict-cause {
            type iana-signal:conflict-cause;
+
          type iana-signal:conflict-cause;
            description
+
          description
              "Indicates the cause of the conflict.";
+
            "Indicates the cause of the conflict.";
          }
+
        }
          leaf retry-timer {
+
        leaf retry-timer {
            type uint32;
+
          type uint32;
            units "seconds";
+
          units "seconds";
            description
+
          description
              "The DOTS client must not resend the
+
            "The DOTS client must not resend the
                same request that has a conflict before the expiry of
+
            same request that has a conflict before the expiry of
                this timer.";
+
            this timer.";
          }
+
        }
          container conflict-scope {
+
        container conflict-scope {
            description
+
          description
              "Provides more information about the conflict scope.";
+
            "Provides more information about the conflict scope.";
            uses ietf-data:target {
+
          uses ietf-data:target {
              when "/dots-signal/scope/conflict-information/"
+
            when "/dots-signal/scope/conflict-information/"
                  + "conflict-cause = 'overlapping-targets'";
+
              + "conflict-cause = 'overlapping-targets'";
            }
+
          }
            leaf-list alias-name {
+
          leaf-list alias-name {
              when "../../conflict-cause = 'overlapping-targets'";
+
            when "../../conflict-cause = 'overlapping-targets'";
              type string;
+
            type string;
              description
+
            description
                "Conflicting alias-name.";
+
              "Conflicting alias-name.";
            }
+
          }
            list acl-list {
+
          list acl-list {
              when "../../conflict-cause = 'conflict-with-acceptlist'";
+
            when "../../conflict-cause = 'conflict-with-acceptlist'";
              key "acl-name";
+
            key "acl-name";
              description
+
            description
                "List of conflicting ACLs as defined in the DOTS data
+
              "List of conflicting ACLs as defined in the DOTS data
                  channel.  These ACLs are uniquely defined by
+
              channel.  These ACLs are uniquely defined by
                  cuid and acl-name.";
+
              cuid and acl-name.";
              leaf acl-name {
+
            leaf acl-name {
                type leafref {
+
              type leafref {
                  path "/ietf-data:dots-data/ietf-data:dots-client/"
+
                path "/ietf-data:dots-data/ietf-data:dots-client/"
                      + "ietf-data:acls/ietf-data:acl/ietf-data:name";
+
                  + "ietf-data:acls/ietf-data:acl/ietf-data:name";
                }
+
              }
                description
+
              description
                  "Reference to the conflicting ACL name bound to
+
                "Reference to the conflicting ACL name bound to
                    a DOTS client.";
+
                a DOTS client.";
              }
+
            }
              leaf acl-type {
+
            leaf acl-type {
                type leafref {
+
              type leafref {
                  path "/ietf-data:dots-data/ietf-data:dots-client/"
+
                path "/ietf-data:dots-data/ietf-data:dots-client/"
                      + "ietf-data:acls/ietf-data:acl/ietf-data:type";
+
                  + "ietf-data:acls/ietf-data:acl/ietf-data:type";
                }
+
              }
                description
+
              description
                  "Reference to the conflicting ACL type bound to
+
                "Reference to the conflicting ACL type bound to
                    a DOTS client.";
+
                a DOTS client.";
              }
+
            }
            }
+
          }
            leaf mid {
+
          leaf mid {
              when "../../conflict-cause = 'overlapping-targets'";
+
            when "../../conflict-cause = 'overlapping-targets'";
              type leafref {
+
            type leafref {
                path "../../../mid";
+
              path "../../../mid";
              }
+
            }
              description
+
            description
                "Reference to the conflicting 'mid' bound to
+
              "Reference to the conflicting 'mid' bound to
                  the same DOTS client.";
+
              the same DOTS client.";
            }
+
          }
          }
+
        }
        }
+
      }
        leaf bytes-dropped {
+
      leaf bytes-dropped {
          type yang:zero-based-counter64;
+
        type yang:zero-based-counter64;
          units "bytes";
+
        units "bytes";
          config false;
+
        config false;
          description
+
        description
            "The total dropped byte count for the mitigation
+
          "The total dropped byte count for the mitigation
              request since the attack mitigation was triggered.
+
          request since the attack mitigation was triggered.
              The count wraps around when it reaches the maximum value
+
          The count wraps around when it reaches the maximum value
              of counter64 for dropped bytes.";
+
          of counter64 for dropped bytes.";
        }
+
      }
        leaf bps-dropped {
+
      leaf bps-dropped {
          type yang:gauge64;
+
        type yang:gauge64;
          config false;
+
        config false;
          description
+
        description
            "The average number of dropped bits per second for
+
          "The average number of dropped bits per second for
              the mitigation request since the attack
+
          the mitigation request since the attack
              mitigation was triggered.  This should be over
+
          mitigation was triggered.  This should be over
              five-minute intervals (that is, measuring bytes
+
          five-minute intervals (that is, measuring bytes
              into five-minute buckets and then averaging these
+
          into five-minute buckets and then averaging these
              buckets over the time since the mitigation was
+
          buckets over the time since the mitigation was
              triggered).";
+
          triggered).";
        }
+
      }
        leaf pkts-dropped {
+
      leaf pkts-dropped {
          type yang:zero-based-counter64;
+
        type yang:zero-based-counter64;
          config false;
+
        config false;
          description
+
        description
            "The total number of dropped packet count for the
+
          "The total number of dropped packet count for the
              mitigation request since the attack mitigation was
+
          mitigation request since the attack mitigation was
              triggered.  The count wraps around when it reaches
+
          triggered.  The count wraps around when it reaches
              the maximum value of counter64 for dropped packets.";
+
          the maximum value of counter64 for dropped packets.";
        }
+
      }
        leaf pps-dropped {
+
      leaf pps-dropped {
          type yang:gauge64;
+
        type yang:gauge64;
          config false;
+
        config false;
          description
+
        description
            "The average number of dropped packets per second
+
          "The average number of dropped packets per second
              for the mitigation request since the attack
+
          for the mitigation request since the attack
              mitigation was triggered.  This should be over
+
          mitigation was triggered.  This should be over
              five-minute intervals (that is, measuring packets
+
          five-minute intervals (that is, measuring packets
              into five-minute buckets and then averaging these
+
          into five-minute buckets and then averaging these
              buckets over the time since the mitigation was
+
          buckets over the time since the mitigation was
              triggered).";
+
          triggered).";
        }
+
      }
        leaf attack-status {
+
      leaf attack-status {
          type iana-signal:attack-status;
+
        type iana-signal:attack-status;
          description
+
        description
            "Indicates the status of an attack as seen by the
+
          "Indicates the status of an attack as seen by the
              DOTS client.";
+
          DOTS client.";
        }
+
      }
      }
+
    }
    }
+
  }
  
    grouping config-parameters {
+
  grouping config-parameters {
      description
+
    description
        "Subset of DOTS signal channel session configuration.";
+
      "Subset of DOTS signal channel session configuration.";
      container heartbeat-interval {
+
    container heartbeat-interval {
        description
+
      description
          "DOTS agents regularly send heartbeats to each other
+
        "DOTS agents regularly send heartbeats to each other
            after mutual authentication is successfully
+
        after mutual authentication is successfully
            completed in order to keep the DOTS signal channel
+
        completed in order to keep the DOTS signal channel
            open.";
+
        open.";
        leaf max-value {
+
      leaf max-value {
          type uint16;
+
        type uint16;
          units "seconds";
+
        units "seconds";
          config false;
+
        config false;
          description
+
        description
            "Maximum acceptable heartbeat-interval value.";
+
          "Maximum acceptable heartbeat-interval value.";
        }
+
      }
        leaf min-value {
+
      leaf min-value {
          type uint16;
+
        type uint16;
          units "seconds";
+
        units "seconds";
          config false;
+
        config false;
          description
+
        description
            "Minimum acceptable heartbeat-interval value.";
+
          "Minimum acceptable heartbeat-interval value.";
        }
+
      }
        leaf current-value {
+
      leaf current-value {
          type uint16;
+
        type uint16;
          units "seconds";
+
        units "seconds";
          default "30";
+
        default "30";
          description
+
        description
            "Current heartbeat-interval value.
+
          "Current heartbeat-interval value.
  
              '0' means that heartbeat mechanism is deactivated.";
+
          '0' means that heartbeat mechanism is deactivated.";
        }
+
      }
      }
+
    }
      container missing-hb-allowed {
+
    container missing-hb-allowed {
        description
+
      description
          "Maximum number of missing heartbeats allowed.";
+
        "Maximum number of missing heartbeats allowed.";
        leaf max-value {
+
      leaf max-value {
          type uint16;
+
        type uint16;
          config false;
+
        config false;
          description
+
        description
            "Maximum acceptable missing-hb-allowed value.";
+
          "Maximum acceptable missing-hb-allowed value.";
        }
+
      }
        leaf min-value {
+
      leaf min-value {
          type uint16;
+
        type uint16;
          config false;
+
        config false;
          description
+
        description
            "Minimum acceptable missing-hb-allowed value.";
+
          "Minimum acceptable missing-hb-allowed value.";
        }
+
      }
        leaf current-value {
+
      leaf current-value {
          type uint16;
+
        type uint16;
          default "15";
+
        default "15";
          description
+
        description
            "Current missing-hb-allowed value.";
+
          "Current missing-hb-allowed value.";
        }
+
      }
      }
+
    }
      container probing-rate {
+
    container probing-rate {
        description
+
      description
          "The limit for sending Non-confirmable messages with
+
        "The limit for sending Non-confirmable messages with
            no response.";
+
        no response.";
        leaf max-value {
+
      leaf max-value {
          type uint16;
+
        type uint16;
          units "byte/second";
+
        units "byte/second";
          config false;
+
        config false;
          description
+
        description
            "Maximum acceptable probing-rate value.";
+
          "Maximum acceptable probing-rate value.";
        }
+
      }
        leaf min-value {
+
      leaf min-value {
          type uint16;
+
        type uint16;
          units "byte/second";
+
        units "byte/second";
          config false;
+
        config false;
          description
+
        description
            "Minimum acceptable probing-rate value.";
+
          "Minimum acceptable probing-rate value.";
        }
+
      }
        leaf current-value {
+
      leaf current-value {
          type uint16;
+
        type uint16;
          units "byte/second";
+
        units "byte/second";
          default "5";
+
        default "5";
          description
+
        description
            "Current probing-rate value.";
+
          "Current probing-rate value.";
        }
+
      }
      }
+
    }
      container max-retransmit {
+
    container max-retransmit {
        description
+
      description
          "Maximum number of retransmissions of a Confirmable
+
        "Maximum number of retransmissions of a Confirmable
            message.";
+
        message.";
        leaf max-value {
+
      leaf max-value {
          type uint16;
+
        type uint16;
          config false;
+
        config false;
          description
+
        description
            "Maximum acceptable max-retransmit value.";
+
          "Maximum acceptable max-retransmit value.";
        }
+
      }
        leaf min-value {
+
      leaf min-value {
          type uint16;
+
        type uint16;
          config false;
+
        config false;
          description
+
        description
            "Minimum acceptable max-retransmit value.";
+
          "Minimum acceptable max-retransmit value.";
        }
+
      }
        leaf current-value {
+
      leaf current-value {
          type uint16;
+
        type uint16;
          default "3";
+
        default "3";
          description
+
        description
            "Current max-retransmit value.";
+
          "Current max-retransmit value.";
        }
+
      }
      }
+
    }
      container ack-timeout {
+
    container ack-timeout {
        description
+
      description
          "Initial retransmission timeout value.";
+
        "Initial retransmission timeout value.";
        leaf max-value-decimal {
+
      leaf max-value-decimal {
          type decimal64 {
+
        type decimal64 {
            fraction-digits 2;
+
          fraction-digits 2;
          }
+
        }
          units "seconds";
+
        units "seconds";
          config false;
+
        config false;
          description
+
        description
            "Maximum ack-timeout value.";
+
          "Maximum ack-timeout value.";
        }
+
      }
        leaf min-value-decimal {
+
      leaf min-value-decimal {
          type decimal64 {
+
        type decimal64 {
            fraction-digits 2;
+
          fraction-digits 2;
          }
+
        }
          units "seconds";
+
        units "seconds";
          config false;
+
        config false;
          description
+
        description
            "Minimum ack-timeout value.";
+
          "Minimum ack-timeout value.";
        }
+
      }
        leaf current-value-decimal {
+
      leaf current-value-decimal {
          type decimal64 {
+
        type decimal64 {
            fraction-digits 2;
+
          fraction-digits 2;
          }
+
        }
          units "seconds";
+
        units "seconds";
          default "2";
+
        default "2";
          description
+
        description
            "Current ack-timeout value.";
+
          "Current ack-timeout value.";
        }
+
      }
      }
+
    }
      container ack-random-factor {
+
    container ack-random-factor {
        description
+
      description
          "Random factor used to influence the timing of
+
        "Random factor used to influence the timing of
            retransmissions.";
+
        retransmissions.";
        leaf max-value-decimal {
+
      leaf max-value-decimal {
          type decimal64 {
+
        type decimal64 {
            fraction-digits 2;
+
          fraction-digits 2;
          }
+
        }
          config false;
+
        config false;
          description
+
        description
            "Maximum acceptable ack-random-factor value.";
+
          "Maximum acceptable ack-random-factor value.";
        }
+
      }
        leaf min-value-decimal {
+
      leaf min-value-decimal {
          type decimal64 {
+
        type decimal64 {
            fraction-digits 2;
+
          fraction-digits 2;
          }
+
        }
          config false;
+
        config false;
          description
+
        description
            "Minimum acceptable ack-random-factor value.";
+
          "Minimum acceptable ack-random-factor value.";
        }
+
      }
        leaf current-value-decimal {
+
      leaf current-value-decimal {
          type decimal64 {
+
        type decimal64 {
            fraction-digits 2;
+
          fraction-digits 2;
          }
+
        }
          default "1.5";
+
        default "1.5";
          description
+
        description
            "Current ack-random-factor value.";
+
          "Current ack-random-factor value.";
        }
+
      }
      }
+
    }
    }
+
  }
  
    grouping signal-config {
+
  grouping signal-config {
      description
+
    description
        "DOTS signal channel session configuration.";
+
      "DOTS signal channel session configuration.";
      leaf sid {
+
    leaf sid {
        type uint32;
+
      type uint32;
        mandatory true;
+
      mandatory true;
        description
+
      description
          "An identifier for the DOTS signal channel
+
        "An identifier for the DOTS signal channel
            session configuration data.";
+
        session configuration data.";
      }
+
    }
      container mitigating-config {
+
    container mitigating-config {
        description
+
      description
          "Configuration parameters to use when a mitigation
+
        "Configuration parameters to use when a mitigation
            is active.";
+
        is active.";
        uses config-parameters;
+
      uses config-parameters;
      }
+
    }
      container idle-config {
+
    container idle-config {
        description
+
      description
          "Configuration parameters to use when no mitigation
+
        "Configuration parameters to use when no mitigation
            is active.";
+
        is active.";
        uses config-parameters;
+
      uses config-parameters;
      }
+
    }
    }
+
  }
  
    grouping redirected-signal {
+
  grouping redirected-signal {
      description
+
    description
        "Grouping for the redirected signaling.";
+
      "Grouping for the redirected signaling.";
      leaf alt-server {
+
    leaf alt-server {
        type string;
+
      type string;
        config false;
+
      config false;
        mandatory true;
+
      mandatory true;
        description
+
      description
          "FQDN of an alternate server.";
+
        "FQDN of an alternate server.";
      }
+
    }
      leaf-list alt-server-record {
+
    leaf-list alt-server-record {
        type inet:ip-address;
+
      type inet:ip-address;
        config false;
+
      config false;
        description
+
      description
          "List of records for the alternate server.";
+
        "List of records for the alternate server.";
      }
+
    }
    }
+
  }
  
    /*
+
  /*
      * Main Container for DOTS Signal Channel
+
  * Main Container for DOTS Signal Channel
      */
+
  */
  
    container dots-signal {
+
  container dots-signal {
      description
+
    description
        "Main container for DOTS signal message.
+
      "Main container for DOTS signal message.
  
          A DOTS signal message can be a mitigation, a configuration,
+
      A DOTS signal message can be a mitigation, a configuration,
          or a redirected signal message.";
+
      or a redirected signal message.";
      choice message-type {
+
    choice message-type {
        description
+
      description
          "Can be a mitigation, a configuration, or a redirect
+
        "Can be a mitigation, a configuration, or a redirect
            message.";
+
        message.";
        case mitigation-scope {
+
      case mitigation-scope {
          description
+
        description
            "Mitigation scope of a mitigation message.";
+
          "Mitigation scope of a mitigation message.";
          uses mitigation-scope;
+
        uses mitigation-scope;
        }
+
      }
        case signal-config {
+
      case signal-config {
          description
+
        description
            "Configuration message.";
+
          "Configuration message.";
          uses signal-config;
+
        uses signal-config;
        }
+
      }
        case redirected-signal {
+
      case redirected-signal {
          description
+
        description
            "Redirected signaling.";
+
          "Redirected signaling.";
          uses redirected-signal;
+
        uses redirected-signal;
        }
+
      }
        case heartbeat {
+
      case heartbeat {
          description
+
        description
            "DOTS heartbeats.";
+
          "DOTS heartbeats.";
          leaf peer-hb-status {
+
        leaf peer-hb-status {
            type boolean;
+
          type boolean;
            mandatory true;
+
          mandatory true;
            description
+
          description
              "Indicates whether a DOTS agent receives heartbeats
+
            "Indicates whether a DOTS agent receives heartbeats
                from its peer.  The value is set to 'true' if the
+
            from its peer.  The value is set to 'true' if the
                DOTS agent is receiving heartbeat messages
+
            DOTS agent is receiving heartbeat messages
                from its peer.";
+
            from its peer.";
          }
+
        }
        }
+
      }
      }
+
    }
    }
+
  }
  }
+
}
  <CODE ENDS>
+
<CODE ENDS>
  
6.  YANG/JSON Mapping Parameters to CBOR
+
== YANG/JSON Mapping Parameters to CBOR ==
  
  All parameters in the payload of the DOTS signal channel MUST be
+
All parameters in the payload of the DOTS signal channel MUST be
  mapped to CBOR types as shown in Table 5 and are assigned an integer
+
mapped to CBOR types as shown in Table 5 and are assigned an integer
  key to save space.
+
key to save space.
  
      Note: Implementers must check that the mapping output provided by
+
  Note: Implementers must check that the mapping output provided by
      their YANG-to-CBOR encoding schemes is aligned with the content of
+
  their YANG-to-CBOR encoding schemes is aligned with the content of
      Table 5.  For example, some CBOR and JSON types for enumerations
+
  Table 5.  For example, some CBOR and JSON types for enumerations
      and the 64-bit quantities can differ depending on the encoder
+
  and the 64-bit quantities can differ depending on the encoder
      used.
+
  used.
  
  The CBOR key values are divided into two types: comprehension-
+
The CBOR key values are divided into two types: comprehension-
  required and comprehension-optional.  DOTS agents can safely ignore
+
required and comprehension-optional.  DOTS agents can safely ignore
  comprehension-optional values they don't understand, but they cannot
+
comprehension-optional values they don't understand, but they cannot
  successfully process a request if it contains comprehension-required
+
successfully process a request if it contains comprehension-required
  values that are not understood.  The 4.00 response SHOULD include a
+
values that are not understood.  The 4.00 response SHOULD include a
  diagnostic payload describing the unknown comprehension-required CBOR
+
diagnostic payload describing the unknown comprehension-required CBOR
  key values.  The initial set of CBOR key values defined in this
+
key values.  The initial set of CBOR key values defined in this
  specification are of type comprehension-required.
+
specification are of type comprehension-required.
  
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | Parameter Name      | YANG Type    | CBOR | CBOR Major  | JSON  |
+
| Parameter Name      | YANG Type    | CBOR | CBOR Major  | JSON  |
  |                    |              | Key  | Type &      | Type  |
+
|                    |              | Key  | Type &      | Type  |
  |                    |              |      | Information |        |
+
|                    |              |      | Information |        |
  +=====================+==============+======+=============+========+
+
+=====================+==============+======+=============+========+
  | ietf-dots-signal-  | container    | 1    | 5 map      | Object |
+
| ietf-dots-signal-  | container    | 1    | 5 map      | Object |
  | channel:mitigation- |              |      |            |        |
+
| channel:mitigation- |              |      |            |        |
  | scope              |              |      |            |        |
+
| scope              |              |      |            |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | scope              | list        | 2    | 4 array    | Array  |
+
| scope              | list        | 2    | 4 array    | Array  |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | cdid                | string      | 3    | 3 text      | String |
+
| cdid                | string      | 3    | 3 text      | String |
  |                    |              |      | string      |        |
+
|                    |              |      | string      |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | cuid                | string      | 4    | 3 text      | String |
+
| cuid                | string      | 4    | 3 text      | String |
  |                    |              |      | string      |        |
+
|                    |              |      | string      |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | mid                | uint32      | 5    | 0 unsigned  | Number |
+
| mid                | uint32      | 5    | 0 unsigned  | Number |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | target-prefix      | leaf-list    | 6    | 4 array    | Array  |
+
| target-prefix      | leaf-list    | 6    | 4 array    | Array  |
  |                    +--------------+------+-------------+--------+
+
|                    +--------------+------+-------------+--------+
  |                    | inet:ip-    |      | 3 text      | String |
+
|                    | inet:ip-    |      | 3 text      | String |
  |                    | prefix      |      | string      |        |
+
|                    | prefix      |      | string      |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | target-port-range  | list        | 7    | 4 array    | Array  |
+
| target-port-range  | list        | 7    | 4 array    | Array  |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | lower-port          | inet:port-  | 8    | 0 unsigned  | Number |
+
| lower-port          | inet:port-  | 8    | 0 unsigned  | Number |
  |                    | number      |      |            |        |
+
|                    | number      |      |            |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | upper-port          | inet:port-  | 9    | 0 unsigned  | Number |
+
| upper-port          | inet:port-  | 9    | 0 unsigned  | Number |
  |                    | number      |      |            |        |
+
|                    | number      |      |            |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | target-protocol    | leaf-list    | 10  | 4 array    | Array  |
+
| target-protocol    | leaf-list    | 10  | 4 array    | Array  |
  |                    +--------------+------+-------------+--------+
+
|                    +--------------+------+-------------+--------+
  |                    | uint8        |      | 0 unsigned  | Number |
+
|                    | uint8        |      | 0 unsigned  | Number |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | target-fqdn        | leaf-list    | 11  | 4 array    | Array  |
+
| target-fqdn        | leaf-list    | 11  | 4 array    | Array  |
  |                    +--------------+------+-------------+--------+
+
|                    +--------------+------+-------------+--------+
  |                    | inet:domain- |      | 3 text      | String |
+
|                    | inet:domain- |      | 3 text      | String |
  |                    | name        |      | string      |        |
+
|                    | name        |      | string      |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | target-uri          | leaf-list    | 12  | 4 array    | Array  |
+
| target-uri          | leaf-list    | 12  | 4 array    | Array  |
  |                    +--------------+------+-------------+--------+
+
|                    +--------------+------+-------------+--------+
  |                    | inet:uri    |      | 3 text      | String |
+
|                    | inet:uri    |      | 3 text      | String |
  |                    |              |      | string      |        |
+
|                    |              |      | string      |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | alias-name          | leaf-list    | 13  | 4 array    | Array  |
+
| alias-name          | leaf-list    | 13  | 4 array    | Array  |
  |                    +--------------+------+-------------+--------+
+
|                    +--------------+------+-------------+--------+
  |                    | string      |      | 3 text      | String |
+
|                    | string      |      | 3 text      | String |
  |                    |              |      | string      |        |
+
|                    |              |      | string      |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | lifetime            | int32        | 14  | 0 unsigned  | Number |
+
| lifetime            | int32        | 14  | 0 unsigned  | Number |
  |                    |              |      +-------------+--------+
+
|                    |              |      +-------------+--------+
  |                    |              |      | 1 negative  | Number |
+
|                    |              |      | 1 negative  | Number |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | mitigation-start    | uint64      | 15  | 0 unsigned  | String |
+
| mitigation-start    | uint64      | 15  | 0 unsigned  | String |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | status              | enumeration  | 16  | 0 unsigned  | String |
+
| status              | enumeration  | 16  | 0 unsigned  | String |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | conflict-          | container    | 17  | 5 map      | Object |
+
| conflict-          | container    | 17  | 5 map      | Object |
  | information        |              |      |            |        |
+
| information        |              |      |            |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | conflict-status    | enumeration  | 18  | 0 unsigned  | String |
+
| conflict-status    | enumeration  | 18  | 0 unsigned  | String |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | conflict-cause      | enumeration  | 19  | 0 unsigned  | String |
+
| conflict-cause      | enumeration  | 19  | 0 unsigned  | String |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | retry-timer        | uint32      | 20  | 0 unsigned  | String |
+
| retry-timer        | uint32      | 20  | 0 unsigned  | String |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | conflict-scope      | container    | 21  | 5 map      | Object |
+
| conflict-scope      | container    | 21  | 5 map      | Object |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | acl-list            | list        | 22  | 4 array    | Array  |
+
| acl-list            | list        | 22  | 4 array    | Array  |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | acl-name            | leafref      | 23  | 3 text      | String |
+
| acl-name            | leafref      | 23  | 3 text      | String |
  |                    |              |      | string      |        |
+
|                    |              |      | string      |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | acl-type            | leafref      | 24  | 3 text      | String |
+
| acl-type            | leafref      | 24  | 3 text      | String |
  |                    |              |      | string      |        |
+
|                    |              |      | string      |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | bytes-dropped      | yang:zero-  | 25  | 0 unsigned  | String |
+
| bytes-dropped      | yang:zero-  | 25  | 0 unsigned  | String |
  |                    | based-      |      |            |        |
+
|                    | based-      |      |            |        |
  |                    | counter64    |      |            |        |
+
|                    | counter64    |      |            |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | bps-dropped        | yang:gauge64 | 26  | 0 unsigned  | String |
+
| bps-dropped        | yang:gauge64 | 26  | 0 unsigned  | String |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | pkts-dropped        | yang:zero-  | 27  | 0 unsigned  | String |
+
| pkts-dropped        | yang:zero-  | 27  | 0 unsigned  | String |
  |                    | based-      |      |            |        |
+
|                    | based-      |      |            |        |
  |                    | counter64    |      |            |        |
+
|                    | counter64    |      |            |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | pps-dropped        | yang:gauge64 | 28  | 0 unsigned  | String |
+
| pps-dropped        | yang:gauge64 | 28  | 0 unsigned  | String |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | attack-status      | enumeration  | 29  | 0 unsigned  | String |
+
| attack-status      | enumeration  | 29  | 0 unsigned  | String |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | ietf-dots-signal-  | container    | 30  | 5 map      | Object |
+
| ietf-dots-signal-  | container    | 30  | 5 map      | Object |
  | channel:signal-    |              |      |            |        |
+
| channel:signal-    |              |      |            |        |
  | config              |              |      |            |        |
+
| config              |              |      |            |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | sid                | uint32      | 31  | 0 unsigned  | Number |
+
| sid                | uint32      | 31  | 0 unsigned  | Number |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | mitigating-config  | container    | 32  | 5 map      | Object |
+
| mitigating-config  | container    | 32  | 5 map      | Object |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | heartbeat-interval  | container    | 33  | 5 map      | Object |
+
| heartbeat-interval  | container    | 33  | 5 map      | Object |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | max-value          | uint16      | 34  | 0 unsigned  | Number |
+
| max-value          | uint16      | 34  | 0 unsigned  | Number |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | min-value          | uint16      | 35  | 0 unsigned  | Number |
+
| min-value          | uint16      | 35  | 0 unsigned  | Number |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | current-value      | uint16      | 36  | 0 unsigned  | Number |
+
| current-value      | uint16      | 36  | 0 unsigned  | Number |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | missing-hb-allowed  | container    | 37  | 5 map      | Object |
+
| missing-hb-allowed  | container    | 37  | 5 map      | Object |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | max-retransmit      | container    | 38  | 5 map      | Object |
+
| max-retransmit      | container    | 38  | 5 map      | Object |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | ack-timeout        | container    | 39  | 5 map      | Object |
+
| ack-timeout        | container    | 39  | 5 map      | Object |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | ack-random-factor  | container    | 40  | 5 map      | Object |
+
| ack-random-factor  | container    | 40  | 5 map      | Object |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | max-value-decimal  | decimal64    | 41  | 6 tag 4    | String |
+
| max-value-decimal  | decimal64    | 41  | 6 tag 4    | String |
  |                    |              |      | [-2,        |        |
+
|                    |              |      | [-2,        |        |
  |                    |              |      | integer]    |        |
+
|                    |              |      | integer]    |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | min-value-decimal  | decimal64    | 42  | 6 tag 4    | String |
+
| min-value-decimal  | decimal64    | 42  | 6 tag 4    | String |
  |                    |              |      | [-2,        |        |
+
|                    |              |      | [-2,        |        |
  |                    |              |      | integer]    |        |
+
|                    |              |      | integer]    |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | current-value-      | decimal64    | 43  | 6 tag 4    | String |
+
| current-value-      | decimal64    | 43  | 6 tag 4    | String |
  | decimal            |              |      | [-2,        |        |
+
| decimal            |              |      | [-2,        |        |
  |                    |              |      | integer]    |        |
+
|                    |              |      | integer]    |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | idle-config        | container    | 44  | 5 map      | Object |
+
| idle-config        | container    | 44  | 5 map      | Object |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | trigger-mitigation  | boolean      | 45  | 7 bits 20  | False  |
+
| trigger-mitigation  | boolean      | 45  | 7 bits 20  | False  |
  |                    |              |      +-------------+--------+
+
|                    |              |      +-------------+--------+
  |                    |              |      | 7 bits 21  | True  |
+
|                    |              |      | 7 bits 21  | True  |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | ietf-dots-signal-  | container    | 46  | 5 map      | Object |
+
| ietf-dots-signal-  | container    | 46  | 5 map      | Object |
  | channel:redirected- |              |      |            |        |
+
| channel:redirected- |              |      |            |        |
  | signal              |              |      |            |        |
+
| signal              |              |      |            |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | alt-server          | string      | 47  | 3 text      | String |
+
| alt-server          | string      | 47  | 3 text      | String |
  |                    |              |      | string      |        |
+
|                    |              |      | string      |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | alt-server-record  | leaf-list    | 48  | 4 array    | Array  |
+
| alt-server-record  | leaf-list    | 48  | 4 array    | Array  |
  |                    +--------------+------+-------------+--------+
+
|                    +--------------+------+-------------+--------+
  |                    | inet:ip-    |      | 3 text      | String |
+
|                    | inet:ip-    |      | 3 text      | String |
  |                    | address      |      | string      |        |
+
|                    | address      |      | string      |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | ietf-dots-signal-  | container    | 49  | 5 map      | Object |
+
| ietf-dots-signal-  | container    | 49  | 5 map      | Object |
  | channel:heartbeat  |              |      |            |        |
+
| channel:heartbeat  |              |      |            |        |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | probing-rate        | container    | 50  | 5 map      | Object |
+
| probing-rate        | container    | 50  | 5 map      | Object |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  | peer-hb-status      | boolean      | 51  | 7 bits 20  | False  |
+
| peer-hb-status      | boolean      | 51  | 7 bits 20  | False  |
  |                    |              |      +-------------+--------+
+
|                    |              |      +-------------+--------+
  |                    |              |      | 7 bits 21  | True  |
+
|                    |              |      | 7 bits 21  | True  |
  +---------------------+--------------+------+-------------+--------+
+
+---------------------+--------------+------+-------------+--------+
  
    Table 5: CBOR Key Values Used in DOTS Signal Channel Messages &
+
  Table 5: CBOR Key Values Used in DOTS Signal Channel Messages &
                    Their Mappings to JSON and YANG
+
                  Their Mappings to JSON and YANG
  
7.  (D)TLS Protocol Profile and Performance Considerations
+
== (D)TLS Protocol Profile and Performance Considerations ==
  
7.1.  (D)TLS Protocol Profile
+
=== (D)TLS Protocol Profile ===
  
  This section defines the (D)TLS protocol profile of DOTS signal
+
This section defines the (D)TLS protocol profile of DOTS signal
  channel over (D)TLS and DOTS data channel over TLS.
+
channel over (D)TLS and DOTS data channel over TLS.
  
  There are known attacks on (D)TLS, such as man-in-the-middle and
+
There are known attacks on (D)TLS, such as man-in-the-middle and
  protocol downgrade attacks.  These are general attacks on (D)TLS and,
+
protocol downgrade attacks.  These are general attacks on (D)TLS and,
  as such, they are not specific to DOTS over (D)TLS; refer to the
+
as such, they are not specific to DOTS over (D)TLS; refer to the
  (D)TLS RFCs for discussion of these security issues.  DOTS agents
+
(D)TLS RFCs for discussion of these security issues.  DOTS agents
  MUST adhere to the (D)TLS implementation recommendations and security
+
MUST adhere to the (D)TLS implementation recommendations and security
  considerations of [RFC7525] except with respect to (D)TLS version.
+
considerations of [[RFC7525]] except with respect to (D)TLS version.
  Because DOTS signal channel encryption relying upon (D)TLS is
+
Because DOTS signal channel encryption relying upon (D)TLS is
  virtually a greenfield deployment, DOTS agents MUST implement only
+
virtually a greenfield deployment, DOTS agents MUST implement only
  (D)TLS 1.2 or later.
+
(D)TLS 1.2 or later.
  
  When a DOTS client is configured with a domain name of the DOTS
+
When a DOTS client is configured with a domain name of the DOTS
  server, and it connects to its configured DOTS server, the server may
+
server, and it connects to its configured DOTS server, the server may
  present it with a PKIX certificate.  In order to ensure proper
+
present it with a PKIX certificate.  In order to ensure proper
  authentication, a DOTS client MUST verify the entire certification
+
authentication, a DOTS client MUST verify the entire certification
  path per [RFC5280].  Additionally, the DOTS client MUST use [RFC6125]
+
path per [[RFC5280]].  Additionally, the DOTS client MUST use [[RFC6125]]
  validation techniques to compare the domain name with the certificate
+
validation techniques to compare the domain name with the certificate
  provided.  Certification authorities that issue DOTS server
+
provided.  Certification authorities that issue DOTS server
  certificates SHOULD support the DNS-ID and SRV-ID identifier types.
+
certificates SHOULD support the DNS-ID and SRV-ID identifier types.
  DOTS servers SHOULD prefer the use of DNS-ID and SRV-ID over CN-ID
+
DOTS servers SHOULD prefer the use of DNS-ID and SRV-ID over CN-ID
  identifier types in certificate requests (as described in Section 2.3
+
identifier types in certificate requests (as described in Section 2.3
  of [RFC6125]), and the wildcard character '*' SHOULD NOT be included
+
of [[RFC6125]]), and the wildcard character '*' SHOULD NOT be included
  in the presented identifier.  DOTS doesn't use URI-IDs for server
+
in the presented identifier.  DOTS doesn't use URI-IDs for server
  identity verification.
+
identity verification.
  
  A key challenge to deploying DOTS is the provisioning of DOTS
+
A key challenge to deploying DOTS is the provisioning of DOTS
  clients, including the distribution of keying material to DOTS
+
clients, including the distribution of keying material to DOTS
  clients to enable the required mutual authentication of DOTS agents.
+
clients to enable the required mutual authentication of DOTS agents.
  Enrollment over Secure Transport (EST) [RFC7030] defines a method of
+
Enrollment over Secure Transport (EST) [[RFC7030]] defines a method of
  certificate enrollment by which domains operating DOTS servers may
+
certificate enrollment by which domains operating DOTS servers may
  provide DOTS clients with all the necessary cryptographic keying
+
provide DOTS clients with all the necessary cryptographic keying
  material, including a private key and a certificate, to authenticate
+
material, including a private key and a certificate, to authenticate
  themselves.  One deployment option is to have DOTS clients behave as
+
themselves.  One deployment option is to have DOTS clients behave as
  EST clients for certificate enrollment from an EST server provisioned
+
EST clients for certificate enrollment from an EST server provisioned
  by the mitigation provider.  This document does not specify which EST
+
by the mitigation provider.  This document does not specify which EST
  or other mechanism the DOTS client uses to achieve initial
+
or other mechanism the DOTS client uses to achieve initial
  enrollment.
+
enrollment.
  
  The Server Name Indication (SNI) extension [RFC6066] i defines a
+
The Server Name Indication (SNI) extension [[RFC6066]] i defines a
  mechanism for a client to tell a (D)TLS server the name of the server
+
mechanism for a client to tell a (D)TLS server the name of the server
  it wants to contact.  This is a useful extension for hosting
+
it wants to contact.  This is a useful extension for hosting
  environments where multiple virtual servers are reachable over a
+
environments where multiple virtual servers are reachable over a
  single IP address.  The DOTS client may or may not know if it is
+
single IP address.  The DOTS client may or may not know if it is
  interacting with a DOTS server in a virtual server hosting
+
interacting with a DOTS server in a virtual server hosting
  environment, so the DOTS client SHOULD include the DOTS server FQDN
+
environment, so the DOTS client SHOULD include the DOTS server FQDN
  in the SNI extension.
+
in the SNI extension.
  
  Implementations compliant with this profile MUST implement all of the
+
Implementations compliant with this profile MUST implement all of the
  following items:
+
following items:
  
  *  DTLS record replay detection (Section 3.3 of [RFC6347]) or an
+
*  DTLS record replay detection (Section 3.3 of [[RFC6347]]) or an
      equivalent mechanism to protect against replay attacks.
+
  equivalent mechanism to protect against replay attacks.
  
  *  DTLS session resumption without server-side state to resume
+
*  DTLS session resumption without server-side state to resume
      session and convey the DOTS signal.
+
  session and convey the DOTS signal.
  
  *  At least one of raw public keys [RFC7250] or PSK handshake
+
*  At least one of raw public keys [[RFC7250]] or PSK handshake
      [RFC4279] with (EC)DHE key exchange.  This reduces the size of the
+
  [[RFC4279]] with (EC)DHE key exchange.  This reduces the size of the
      ServerHello.  Also, this can be used by DOTS agents that cannot
+
  ServerHello.  Also, this can be used by DOTS agents that cannot
      obtain certificates.
+
  obtain certificates.
  
  Implementations compliant with this profile SHOULD implement all of
+
Implementations compliant with this profile SHOULD implement all of
  the following items to reduce the delay required to deliver a DOTS
+
the following items to reduce the delay required to deliver a DOTS
  signal channel message:
+
signal channel message:
  
  *  TLS False Start [RFC7918], which reduces round-trips by allowing
+
*  TLS False Start [[RFC7918]], which reduces round-trips by allowing
      the TLS client's second flight of messages (ChangeCipherSpec) to
+
  the TLS client's second flight of messages (ChangeCipherSpec) to
      also contain the DOTS signal.  TLS False Start is formally defined
+
  also contain the DOTS signal.  TLS False Start is formally defined
      for use with TLS, but the same technique is applicable to DTLS as
+
  for use with TLS, but the same technique is applicable to DTLS as
      well.
+
  well.
  
  *  Cached Information Extension [RFC7924] which avoids transmitting
+
*  Cached Information Extension [[RFC7924]] which avoids transmitting
      the server's certificate and certificate chain if the client has
+
  the server's certificate and certificate chain if the client has
      cached that information from a previous TLS handshake.
+
  cached that information from a previous TLS handshake.
  
  Compared to UDP, DOTS signal channel over TCP requires an additional
+
Compared to UDP, DOTS signal channel over TCP requires an additional
  round-trip time (RTT) of latency to establish a TCP connection.  DOTS
+
round-trip time (RTT) of latency to establish a TCP connection.  DOTS
  implementations are encouraged to implement TCP Fast Open [RFC7413]
+
implementations are encouraged to implement TCP Fast Open [[RFC7413]]
  to eliminate that RTT.
+
to eliminate that RTT.
  
7.2.  (D)TLS 1.3 Considerations
+
=== (D)TLS 1.3 Considerations ===
  
  TLS 1.3 provides critical latency improvements for connection
+
TLS 1.3 provides critical latency improvements for connection
  establishment over TLS 1.2.  The DTLS 1.3 protocol [DTLS] is based
+
establishment over TLS 1.2.  The DTLS 1.3 protocol [DTLS] is based
  upon the TLS 1.3 protocol and provides equivalent security
+
upon the TLS 1.3 protocol and provides equivalent security
  guarantees.  (D)TLS 1.3 provides two basic handshake modes the DOTS
+
guarantees.  (D)TLS 1.3 provides two basic handshake modes the DOTS
  signal channel can take advantage of:
+
signal channel can take advantage of:
  
  *  A full handshake mode in which a DOTS client can send a DOTS
+
*  A full handshake mode in which a DOTS client can send a DOTS
      mitigation request message after one round trip and the DOTS
+
  mitigation request message after one round trip and the DOTS
      server immediately responds with a DOTS mitigation response.  This
+
  server immediately responds with a DOTS mitigation response.  This
      assumes no packet loss is experienced.
+
  assumes no packet loss is experienced.
  
  *  0-RTT mode in which the DOTS client can authenticate itself and
+
*  0-RTT mode in which the DOTS client can authenticate itself and
      send DOTS mitigation request messages in the first message, thus
+
  send DOTS mitigation request messages in the first message, thus
      reducing handshake latency. 0-RTT only works if the DOTS client
+
  reducing handshake latency. 0-RTT only works if the DOTS client
      has previously communicated with that DOTS server, which is very
+
  has previously communicated with that DOTS server, which is very
      likely with the DOTS signal channel.
+
  likely with the DOTS signal channel.
  
  The DOTS client has to establish a (D)TLS session with the DOTS
+
The DOTS client has to establish a (D)TLS session with the DOTS
  server during 'idle' time and share a PSK.
+
server during 'idle' time and share a PSK.
  
  During a DDoS attack, the DOTS client can use the (D)TLS session to
+
During a DDoS attack, the DOTS client can use the (D)TLS session to
  convey the DOTS mitigation request message and, if there is no
+
convey the DOTS mitigation request message and, if there is no
  response from the server after multiple retries, the DOTS client can
+
response from the server after multiple retries, the DOTS client can
  resume the (D)TLS session in 0-RTT mode using PSK.
+
resume the (D)TLS session in 0-RTT mode using PSK.
  
  DOTS servers that support (D)TLS 1.3 MAY allow DOTS clients to send
+
DOTS servers that support (D)TLS 1.3 MAY allow DOTS clients to send
  early data (0-RTT).  DOTS clients MUST NOT send "CoAP Ping" as early
+
early data (0-RTT).  DOTS clients MUST NOT send "CoAP Ping" as early
  data; such messages MUST be rejected by DOTS servers.  Section 8 of
+
data; such messages MUST be rejected by DOTS servers.  Section 8 of
  [RFC8446] discusses some mechanisms to implement in order to limit
+
[[RFC8446]] discusses some mechanisms to implement in order to limit
  the impact of replay attacks on 0-RTT data.  If the DOTS server
+
the impact of replay attacks on 0-RTT data.  If the DOTS server
  accepts 0-RTT, it MUST implement one of these mechanisms to prevent
+
accepts 0-RTT, it MUST implement one of these mechanisms to prevent
  replay at the TLS layer.  A DOTS server can reject 0-RTT by sending a
+
replay at the TLS layer.  A DOTS server can reject 0-RTT by sending a
  TLS HelloRetryRequest.
+
TLS HelloRetryRequest.
  
  The DOTS signal channel messages sent as early data by the DOTS
+
The DOTS signal channel messages sent as early data by the DOTS
  client are idempotent requests.  As a reminder, the Message ID
+
client are idempotent requests.  As a reminder, the Message ID
  (Section 3 of [RFC7252]) is changed each time a new CoAP request is
+
(Section 3 of [[RFC7252]]) is changed each time a new CoAP request is
  sent, and the Token (Section 5.3.1 of [RFC7252]) is randomized in
+
sent, and the Token (Section 5.3.1 of [[RFC7252]]) is randomized in
  each CoAP request.  The DOTS server(s) MUST use the Message ID and
+
each CoAP request.  The DOTS server(s) MUST use the Message ID and
  the Token in the DOTS signal channel message to detect replay of
+
the Token in the DOTS signal channel message to detect replay of
  early data at the application layer and accept 0-RTT data at most
+
early data at the application layer and accept 0-RTT data at most
  once from the same DOTS client.  This anti-replay defense requires
+
once from the same DOTS client.  This anti-replay defense requires
  sharing the Message ID and the Token in the 0-RTT data between DOTS
+
sharing the Message ID and the Token in the 0-RTT data between DOTS
  servers in the DOTS server domain.  DOTS servers do not rely on
+
servers in the DOTS server domain.  DOTS servers do not rely on
  transport coordinates to identify DOTS peers.  As specified in
+
transport coordinates to identify DOTS peers.  As specified in
  Section 4.4.1, DOTS servers couple the DOTS signal channel sessions
+
Section 4.4.1, DOTS servers couple the DOTS signal channel sessions
  using the DOTS client identity and optionally the 'cdid' parameter
+
using the DOTS client identity and optionally the 'cdid' parameter
  value.  Furthermore, the 'mid' value is monotonically increased by
+
value.  Furthermore, the 'mid' value is monotonically increased by
  the DOTS client for each mitigation request, thus attackers that
+
the DOTS client for each mitigation request, thus attackers that
  replay mitigation requests with lower numeric 'mid' values and
+
replay mitigation requests with lower numeric 'mid' values and
  overlapping scopes with mitigation requests having higher numeric
+
overlapping scopes with mitigation requests having higher numeric
  'mid' values will be rejected systematically by the DOTS server.
+
'mid' values will be rejected systematically by the DOTS server.
  Likewise, the 'sid' value is monotonically increased by the DOTS
+
Likewise, the 'sid' value is monotonically increased by the DOTS
  client for each configuration request (Section 4.5.2); attackers
+
client for each configuration request (Section 4.5.2); attackers
  replaying configuration requests with lower numeric 'sid' values will
+
replaying configuration requests with lower numeric 'sid' values will
  be rejected by the DOTS server if it maintains a higher numeric 'sid'
+
be rejected by the DOTS server if it maintains a higher numeric 'sid'
  value for this DOTS client.
+
value for this DOTS client.
  
  Owing to the aforementioned protections, all DOTS signal channel
+
Owing to the aforementioned protections, all DOTS signal channel
  requests are safe to transmit in TLS 1.3 as early data.  Refer to
+
requests are safe to transmit in TLS 1.3 as early data.  Refer to
  [DOTS-EARLYDATA] for more details.
+
[DOTS-EARLYDATA] for more details.
  
  A simplified TLS 1.3 handshake with 0-RTT DOTS mitigation request
+
A simplified TLS 1.3 handshake with 0-RTT DOTS mitigation request
  message exchange is shown in Figure 29.
+
message exchange is shown in Figure 29.
  
      DOTS Client                                    DOTS Server
+
    DOTS Client                                    DOTS Server
  
      ClientHello
+
    ClientHello
      (0-RTT DOTS signal message)
+
    (0-RTT DOTS signal message)
                                -------->
+
                              -------->
                                                      ServerHello
+
                                                    ServerHello
                                            {EncryptedExtensions}
+
                                          {EncryptedExtensions}
                                                        {Finished}
+
                                                    {Finished}
                                <--------  [DOTS signal message]
+
                              <--------  [DOTS signal message]
      (end_of_early_data)
+
    (end_of_early_data)
      {Finished}                -------->
+
    {Finished}                -------->
      [DOTS signal message]    <------->  [DOTS signal message]
+
    [DOTS signal message]    <------->  [DOTS signal message]
  
  Note that:
+
Note that:
      () Indicates messages protected 0-RTT keys
+
    () Indicates messages protected 0-RTT keys
      {} Indicates messages protected using handshake keys
+
    {} Indicates messages protected using handshake keys
      [] Indicates messages protected using 1-RTT keys
+
    [] Indicates messages protected using 1-RTT keys
  
            Figure 29: A Simplified TLS 1.3 Handshake with 0-RTT
+
        Figure 29: A Simplified TLS 1.3 Handshake with 0-RTT
  
7.3.  DTLS MTU and Fragmentation
+
=== DTLS MTU and Fragmentation ===
  
  To avoid DOTS signal message fragmentation and the subsequent
+
To avoid DOTS signal message fragmentation and the subsequent
  decreased probability of message delivery, DOTS agents MUST ensure
+
decreased probability of message delivery, DOTS agents MUST ensure
  that the DTLS record fits within a single datagram.  As a reminder,
+
that the DTLS record fits within a single datagram.  As a reminder,
  DTLS handles fragmentation and reassembly only for handshake messages
+
DTLS handles fragmentation and reassembly only for handshake messages
  and not for the application data (Section 4.1.1 of [RFC6347]).  If
+
and not for the application data (Section 4.1.1 of [[RFC6347]]).  If
  the path MTU (PMTU) cannot be discovered, DOTS agents MUST assume a
+
the path MTU (PMTU) cannot be discovered, DOTS agents MUST assume a
  PMTU of 1280 bytes, as IPv6 requires that every link in the Internet
+
PMTU of 1280 bytes, as IPv6 requires that every link in the Internet
  have an MTU of 1280 octets or greater as specified in [RFC8200].  If
+
have an MTU of 1280 octets or greater as specified in [[RFC8200]].  If
  IPv4 support on legacy or otherwise unusual networks is a
+
IPv4 support on legacy or otherwise unusual networks is a
  consideration and the PMTU is unknown, DOTS implementations MAY
+
consideration and the PMTU is unknown, DOTS implementations MAY
  assume a PMTU of 576 bytes for IPv4 datagrams, as every IPv4 host
+
assume a PMTU of 576 bytes for IPv4 datagrams, as every IPv4 host
  must be capable of receiving a packet whose length is equal to 576
+
must be capable of receiving a packet whose length is equal to 576
  bytes as discussed in [RFC0791] and [RFC1122].
+
bytes as discussed in [[RFC0791]] and [[RFC1122]].
  
  The DOTS client must consider the amount of record expansion expected
+
The DOTS client must consider the amount of record expansion expected
  by the DTLS processing when calculating the size of the CoAP message
+
by the DTLS processing when calculating the size of the CoAP message
  that fits within the PMTU.  PMTU MUST be greater than or equal to
+
that fits within the PMTU.  PMTU MUST be greater than or equal to
  [CoAP message size + DTLS 1.2 overhead of 13 octets + authentication
+
[CoAP message size + DTLS 1.2 overhead of 13 octets + authentication
  overhead of the negotiated DTLS cipher suite + block padding]
+
overhead of the negotiated DTLS cipher suite + block padding]
  (Section 4.1.1.1 of [RFC6347]).  If the total request size exceeds
+
(Section 4.1.1.1 of [[RFC6347]]).  If the total request size exceeds
  the PMTU, then the DOTS client MUST split the DOTS signal into
+
the PMTU, then the DOTS client MUST split the DOTS signal into
  separate messages; for example, the list of addresses in the 'target-
+
separate messages; for example, the list of addresses in the 'target-
  prefix' parameter could be split into multiple lists and each list
+
prefix' parameter could be split into multiple lists and each list
  conveyed in a new PUT request.
+
conveyed in a new PUT request.
  
      |  Implementation Note: DOTS choice of message size parameters
+
  |  Implementation Note: DOTS choice of message size parameters
      |  works well with IPv6 and with most of today's IPv4 paths.
+
  |  works well with IPv6 and with most of today's IPv4 paths.
      |  However, with IPv4, it is harder to safely make sure that there
+
  |  However, with IPv4, it is harder to safely make sure that there
      |  is no IP fragmentation.  If the IPv4 PMTU is unknown,
+
  |  is no IP fragmentation.  If the IPv4 PMTU is unknown,
      |  implementations may want to limit themselves to more
+
  |  implementations may want to limit themselves to more
      |  conservative IPv4 datagram sizes such as 576 bytes, per
+
  |  conservative IPv4 datagram sizes such as 576 bytes, per
      |  [RFC0791].
+
  [[RFC0791]].
  
8.  Mutual Authentication of DOTS Agents & Authorization of DOTS Clients
+
== Mutual Authentication of DOTS Agents & Authorization of DOTS Clients ==
  
  (D)TLS based upon client certificates can be used for mutual
+
(D)TLS based upon client certificates can be used for mutual
  authentication between DOTS agents.  If, for example, a DOTS gateway
+
authentication between DOTS agents.  If, for example, a DOTS gateway
  is involved, DOTS clients and DOTS gateways must perform mutual
+
is involved, DOTS clients and DOTS gateways must perform mutual
  authentication; only authorized DOTS clients are allowed to send DOTS
+
authentication; only authorized DOTS clients are allowed to send DOTS
  signals to a DOTS gateway.  The DOTS gateway and the DOTS server must
+
signals to a DOTS gateway.  The DOTS gateway and the DOTS server must
  perform mutual authentication; a DOTS server only allows DOTS signal
+
perform mutual authentication; a DOTS server only allows DOTS signal
  channel messages from an authorized DOTS gateway, thereby creating a
+
channel messages from an authorized DOTS gateway, thereby creating a
  two-link chain of transitive authentication between the DOTS client
+
two-link chain of transitive authentication between the DOTS client
  and the DOTS server.
+
and the DOTS server.
  
  The DOTS server should support certificate-based client
+
The DOTS server should support certificate-based client
  authentication.  The DOTS client should respond to the DOTS server's
+
authentication.  The DOTS client should respond to the DOTS server's
  TLS CertificateRequest message with the PKIX certificate held by the
+
TLS CertificateRequest message with the PKIX certificate held by the
  DOTS client.  DOTS client certificate validation must be performed
+
DOTS client.  DOTS client certificate validation must be performed
  per [RFC5280], and the DOTS client certificate must conform to the
+
per [[RFC5280]], and the DOTS client certificate must conform to the
  [RFC5280] certificate profile.  If a DOTS client does not support TLS
+
[[RFC5280]] certificate profile.  If a DOTS client does not support TLS
  client certificate authentication, it must support client
+
client certificate authentication, it must support client
  authentication based on pre-shared key or raw public key.
+
authentication based on pre-shared key or raw public key.
  
  +---------------------------------------------+
+
+---------------------------------------------+
  |      example.com domain      +---------+  |
+
|      example.com domain      +---------+  |
  |                                | AAA    |  |
+
|                                | AAA    |  |
  | +---------------+              | Server  |  |
+
| +---------------+              | Server  |  |
  | | Application  |              +------+--+  |
+
| | Application  |              +------+--+  |
  | | server        +<---------------+    ^    |
+
| | server        +<---------------+    ^    |
  | | (DOTS client) |                |    |    |
+
| | (DOTS client) |                |    |    |
  | +---------------+                |    |    |
+
| +---------------+                |    |    |
  |                                  V    V    |  example.net domain
+
|                                  V    V    |  example.net domain
  |                            +-----+----+--+  |    +---------------+
+
|                            +-----+----+--+  |    +---------------+
  | +--------------+          |            |  |    |              |
+
| +--------------+          |            |  |    |              |
  | |  Guest      +<----x---->+    DOTS    +<----->+    DOTS      |
+
| |  Guest      +<----x---->+    DOTS    +<----->+    DOTS      |
  | | (DOTS client)|          |    gateway  |  |    |    server    |
+
| | (DOTS client)|          |    gateway  |  |    |    server    |
  | +--------------+          |            |  |    |              |
+
| +--------------+          |            |  |    |              |
  |                            +----+--------+  |    +---------------+
+
|                            +----+--------+  |    +---------------+
  |                                ^          |
+
|                                ^          |
  |                                |          |
+
|                                |          |
  | +----------------+              |          |
+
| +----------------+              |          |
  | | DDoS detector  |              |          |
+
| | DDoS detector  |              |          |
  | | (DOTS client)  +<-------------+          |
+
| | (DOTS client)  +<-------------+          |
  | +----------------+                          |
+
| +----------------+                          |
  +---------------------------------------------+
+
+---------------------------------------------+
  
  Figure 30: Example of Authentication and Authorization of DOTS Agents
+
Figure 30: Example of Authentication and Authorization of DOTS Agents
  
  In the example depicted in Figure 30, the DOTS gateway and DOTS
+
In the example depicted in Figure 30, the DOTS gateway and DOTS
  clients within the 'example.com' domain mutually authenticate.  After
+
clients within the 'example.com' domain mutually authenticate.  After
  the DOTS gateway validates the identity of a DOTS client, it
+
the DOTS gateway validates the identity of a DOTS client, it
  communicates with the AAA server in the 'example.com' domain to
+
communicates with the AAA server in the 'example.com' domain to
  determine if the DOTS client is authorized to request DDoS
+
determine if the DOTS client is authorized to request DDoS
  mitigation.  If the DOTS client is not authorized, a 4.01
+
mitigation.  If the DOTS client is not authorized, a 4.01
  (Unauthorized) is returned in the response to the DOTS client.  In
+
(Unauthorized) is returned in the response to the DOTS client.  In
  this example, the DOTS gateway only allows the application server and
+
this example, the DOTS gateway only allows the application server and
  DDoS attack detector to request DDoS mitigation, but does not permit
+
DDoS attack detector to request DDoS mitigation, but does not permit
  the user of type 'guest' to request DDoS mitigation.
+
the user of type 'guest' to request DDoS mitigation.
  
  Also, DOTS gateways and servers located in different domains must
+
Also, DOTS gateways and servers located in different domains must
  perform mutual authentication (e.g., using certificates).  A DOTS
+
perform mutual authentication (e.g., using certificates).  A DOTS
  server will only allow a DOTS gateway with a certificate for a
+
server will only allow a DOTS gateway with a certificate for a
  particular domain to request mitigation for that domain.  In
+
particular domain to request mitigation for that domain.  In
  reference to Figure 30, the DOTS server only allows the DOTS gateway
+
reference to Figure 30, the DOTS server only allows the DOTS gateway
  to request mitigation for the 'example.com' domain and not for other
+
to request mitigation for the 'example.com' domain and not for other
  domains.
+
domains.
  
9.  IANA Considerations
+
== IANA Considerations ==
  
9.1.  DOTS Signal Channel UDP and TCP Port Number
+
=== DOTS Signal Channel UDP and TCP Port Number ===
  
  IANA has assigned the port number 4646 (the ASCII decimal value for
+
IANA has assigned the port number 4646 (the ASCII decimal value for
  ".." (DOTS)) to the DOTS signal channel protocol for both UDP and TCP
+
".." (DOTS)) to the DOTS signal channel protocol for both UDP and TCP
  from the "Service Name and Transport Protocol Port Number Registry"
+
from the "Service Name and Transport Protocol Port Number Registry"
  available at <https://www.iana.org/assignments/service-names-port-
+
available at <https://www.iana.org/assignments/service-names-port-
  numbers/>.
+
numbers/>.
  
      Service Name:  dots-signal
+
  Service Name:  dots-signal
      Port Number:  4646
+
  Port Number:  4646
      Transport Protocol:  TCP
+
  Transport Protocol:  TCP
      Description:  Distributed Denial-of-Service Open Threat Signaling
+
  Description:  Distributed Denial-of-Service Open Threat Signaling
        (DOTS) Signal Channel
+
      (DOTS) Signal Channel
      Assignee:  IESG
+
  Assignee:  IESG
      Contact:  IETF Chair
+
  Contact:  IETF Chair
      Registration Date:  2020-01-16
+
  Registration Date:  2020-01-16
      Reference:  [RFC8782]
+
  Reference:  [[RFC8782]]
  
      Service Name:  dots-signal
+
  Service Name:  dots-signal
      Port Number:  4646
+
  Port Number:  4646
      Transport Protocol:  UDP
+
  Transport Protocol:  UDP
      Description:  Distributed Denial-of-Service Open Threat Signaling
+
  Description:  Distributed Denial-of-Service Open Threat Signaling
        (DOTS) Signal Channel
+
      (DOTS) Signal Channel
      Assignee:  IESG
+
  Assignee:  IESG
      Contact:  IETF Chair
+
  Contact:  IETF Chair
      Registration Date:  2020-01-16
+
  Registration Date:  2020-01-16
      Reference:  [RFC8782]
+
  Reference:  [[RFC8782]]
  
9.2.  Well-Known 'dots' URI
+
=== Well-Known 'dots' URI ===
  
  IANA has registered the 'dots' well-known URI (Table 6) in the Well-
+
IANA has registered the 'dots' well-known URI (Table 6) in the Well-
  Known URIs registry (<https://www.iana.org/assignments/well-known-
+
Known URIs registry (<https://www.iana.org/assignments/well-known-
  uris/well-known-uris.xhtml>) as defined by [RFC8615]:
+
uris/well-known-uris.xhtml>) as defined by [[RFC8615]]:
  
    +------------+------------+-----------+-----------+-------------+
+
  +------------+------------+-----------+-----------+-------------+
    | URI Suffix | Change    | Reference | Status    | Related    |
+
  | URI Suffix | Change    | Reference | Status    | Related    |
    |            | Controller |          |          | information |
+
  |            | Controller |          |          | information |
    +============+============+===========+===========+=============+
+
  +============+============+===========+===========+=============+
    | dots      | IETF      | [RFC8782] | permanent | None        |
+
  | dots      | IETF      | [[RFC8782]] | permanent | None        |
    +------------+------------+-----------+-----------+-------------+
+
  +------------+------------+-----------+-----------+-------------+
  
                      Table 6: 'dots' Well-Known URI
+
                    Table 6: 'dots' Well-Known URI
  
9.3.  Media Type Registration
+
=== Media Type Registration ===
  
  IANA has registered the "application/dots+cbor" media type in the
+
IANA has registered the "application/dots+cbor" media type in the
  "Media Types" registry [IANA-MediaTypes] in the manner described in
+
"Media Types" registry [IANA-MediaTypes] in the manner described in
  [RFC6838], which can be used to indicate that the content is a DOTS
+
[[RFC6838]], which can be used to indicate that the content is a DOTS
  signal channel object:
+
signal channel object:
  
  Type name: application
+
Type name: application
  
  Subtype name: dots+cbor
+
Subtype name: dots+cbor
  
  Required parameters: N/A
+
Required parameters: N/A
  
  Optional parameters: N/A
+
Optional parameters: N/A
  
  Encoding considerations: binary
+
Encoding considerations: binary
  
  Security considerations: See the Security Considerations section of
+
Security considerations: See the Security Considerations section of
  [RFC8782].
+
[[RFC8782]].
  
  Interoperability considerations: N/A
+
Interoperability considerations: N/A
  
  Published specification: [RFC8782]
+
Published specification: [[RFC8782]]
  
  Applications that use this media type: DOTS agents sending DOTS
+
Applications that use this media type: DOTS agents sending DOTS
  messages over CoAP over (D)TLS.
+
messages over CoAP over (D)TLS.
  
  Fragment identifier considerations: N/A
+
Fragment identifier considerations: N/A
  
  Additional information:
+
Additional information:
  
      Deprecated alias names for this type: N/A
+
  Deprecated alias names for this type: N/A
      Magic number(s): N/A
+
  Magic number(s): N/A
      File extension(s): N/A
+
  File extension(s): N/A
      Macintosh file type code(s): N/A
+
  Macintosh file type code(s): N/A
  
  Person & email address to contact for further information: IESG,
+
Person & email address to contact for further information: IESG,
+
  
  Intended usage: COMMON
+
Intended usage: COMMON
  
  Restrictions on usage: none
+
Restrictions on usage: none
  
  Author: See Authors' Addresses section.
+
Author: See Authors' Addresses section.
  
  Change controller: IESG
+
Change controller: IESG
  
  Provisional registration?  No
+
Provisional registration?  No
  
9.4.  CoAP Content-Formats Registration
+
=== CoAP Content-Formats Registration ===
  
  IANA has registered the CoAP Content-Format ID for the "application/
+
IANA has registered the CoAP Content-Format ID for the "application/
  dots+cbor" media type in the "CoAP Content-Formats" registry
+
dots+cbor" media type in the "CoAP Content-Formats" registry
  [IANA-CoAP-Content-Formats]:
+
[IANA-CoAP-Content-Formats]:
  
  *  Media Type: application/dots+cbor
+
*  Media Type: application/dots+cbor
  *  Encoding: -
+
*  Encoding: -
  *  ID: 271
+
*  ID: 271
  *  Reference: [RFC8782]
+
*  Reference: [[RFC8782]]
  
9.5.  CBOR Tag Registration
+
=== CBOR Tag Registration ===
  
  This section defines the DOTS CBOR tag as another means for
+
This section defines the DOTS CBOR tag as another means for
  applications to declare that a CBOR data structure is a DOTS signal
+
applications to declare that a CBOR data structure is a DOTS signal
  channel object.  Its use is optional and is intended for use in cases
+
channel object.  Its use is optional and is intended for use in cases
  in which this information would not otherwise be known.  The DOTS
+
in which this information would not otherwise be known.  The DOTS
  CBOR tag is not required for DOTS signal channel protocol version
+
CBOR tag is not required for DOTS signal channel protocol version
  specified in this document.  If present, the DOTS tag MUST prefix a
+
specified in this document.  If present, the DOTS tag MUST prefix a
  DOTS signal channel object.
+
DOTS signal channel object.
  
  IANA has registered the DOTS signal channel CBOR tag in the "CBOR
+
IANA has registered the DOTS signal channel CBOR tag in the "CBOR
  Tags" registry [IANA-CBOR-Tags]:
+
Tags" registry [IANA-CBOR-Tags]:
  
  *  Tag: 271
+
*  Tag: 271
  *  Data Item: DDoS Open Threat Signaling (DOTS) signal channel object
+
*  Data Item: DDoS Open Threat Signaling (DOTS) signal channel object
  *  Semantics: DDoS Open Threat Signaling (DOTS) signal channel
+
*  Semantics: DDoS Open Threat Signaling (DOTS) signal channel
      object, as defined in [RFC8782]
+
  object, as defined in [[RFC8782]]
  *  Reference: [RFC8782]
+
*  Reference: [[RFC8782]]
  
9.6.  DOTS Signal Channel Protocol Registry
+
=== DOTS Signal Channel Protocol Registry ===
  
  IANA has created a new registry titled the "Distributed Denial-of-
+
IANA has created a new registry titled the "Distributed Denial-of-
  Service Open Threat Signaling (DOTS) Signal Channel" registry.  The
+
Service Open Threat Signaling (DOTS) Signal Channel" registry.  The
  following sections define subregistries.
+
following sections define subregistries.
  
9.6.1.  DOTS Signal Channel CBOR Key Values Subregistry
+
==== DOTS Signal Channel CBOR Key Values Subregistry ====
  
  IANA has created a new subregistry titled "DOTS Signal Channel CBOR
+
IANA has created a new subregistry titled "DOTS Signal Channel CBOR
  Key Values".
+
Key Values".
  
  The structure of this subregistry is provided in Section 9.6.1.1.
+
The structure of this subregistry is provided in Section 9.6.1.1.
  Section 9.6.1.2 provides the registry as initially populated with the
+
Section 9.6.1.2 provides the registry as initially populated with the
  values in Table 7.
+
values in Table 7.
  
9.6.1.1.  Registration Template
+
===== Registration Template =====
  
  Parameter name:
+
Parameter name:
      Parameter name as used in the DOTS signal channel.
+
  Parameter name as used in the DOTS signal channel.
  
  CBOR Key Value:
+
CBOR Key Value:
      Key value for the parameter.  The key value MUST be an integer in
+
  Key value for the parameter.  The key value MUST be an integer in
      the 1-65535 range.  The key values of the comprehension-required
+
  the 1-65535 range.  The key values of the comprehension-required
      range (0x0001 - 0x3FFF) and of the comprehension-optional range
+
  range (0x0001 - 0x3FFF) and of the comprehension-optional range
      (0x8000 - 0xBFFF) are assigned by IETF Review (Section 4.8 of
+
  (0x8000 - 0xBFFF) are assigned by IETF Review (Section 4.8 of
      [RFC8126]).  The key values of the comprehension-optional range
+
  [[RFC8126]]).  The key values of the comprehension-optional range
      (0x4000 - 0x7FFF) are assigned by Specification Required
+
  (0x4000 - 0x7FFF) are assigned by Specification Required
      (Section 4.6 of [RFC8126]) and of the comprehension-optional range
+
  (Section 4.6 of [[RFC8126]]) and of the comprehension-optional range
      (0xC000 - 0xFFFF) are reserved for Private Use (Section 4.1 of
+
  (0xC000 - 0xFFFF) are reserved for Private Use (Section 4.1 of
      [RFC8126]).
+
  [[RFC8126]]).
  
      Registration requests for the 0x4000 - 0x7FFF range are evaluated
+
  Registration requests for the 0x4000 - 0x7FFF range are evaluated
      after a three-week review period on the dots-signal-reg-
+
  after a three-week review period on the dots-signal-reg-
      [email protected] mailing list, on the advice of one or more
+
  [email protected] mailing list, on the advice of one or more
      Designated Experts.  However, to allow for the allocation of
+
  Designated Experts.  However, to allow for the allocation of
      values prior to publication, the Designated Experts may approve
+
  values prior to publication, the Designated Experts may approve
      registration once they are satisfied that such a specification
+
  registration once they are satisfied that such a specification
      will be published.  New registration requests should be sent in
+
  will be published.  New registration requests should be sent in
      the form of an email to the review mailing list; the request
+
  the form of an email to the review mailing list; the request
      should use an appropriate subject (e.g., "Request to register CBOR
+
  should use an appropriate subject (e.g., "Request to register CBOR
      Key Value for DOTS: example").  IANA will only accept new
+
  Key Value for DOTS: example").  IANA will only accept new
      registrations from the Designated Experts, and it will check that
+
  registrations from the Designated Experts, and it will check that
      review was requested on the mailing list in accordance with these
+
  review was requested on the mailing list in accordance with these
      procedures.
+
  procedures.
  
      Within the review period, the Designated Experts will either
+
  Within the review period, the Designated Experts will either
      approve or deny the registration request, communicating this
+
  approve or deny the registration request, communicating this
      decision to the review list and IANA.  Denials should include an
+
  decision to the review list and IANA.  Denials should include an
      explanation and, if applicable, suggestions as to how to make the
+
  explanation and, if applicable, suggestions as to how to make the
      request successful.  Registration requests that are undetermined
+
  request successful.  Registration requests that are undetermined
      for a period longer than 21 days can be brought to the IESG's
+
  for a period longer than 21 days can be brought to the IESG's
      attention (using the [email protected] mailing list) for resolution.
+
  attention (using the [email protected] mailing list) for resolution.
  
      Criteria that should be applied by the Designated Experts include
+
  Criteria that should be applied by the Designated Experts include
      determining whether the proposed registration duplicates existing
+
  determining whether the proposed registration duplicates existing
      functionality, whether it is likely to be of general applicability
+
  functionality, whether it is likely to be of general applicability
      or whether it is useful only for a single use case, and whether
+
  or whether it is useful only for a single use case, and whether
      the registration description is clear.  IANA must only accept
+
  the registration description is clear.  IANA must only accept
      registry updates to the 0x4000 - 0x7FFF range from the Designated
+
  registry updates to the 0x4000 - 0x7FFF range from the Designated
      Experts and should direct all requests for registration to the
+
  Experts and should direct all requests for registration to the
      review mailing list.  It is suggested that multiple Designated
+
  review mailing list.  It is suggested that multiple Designated
      Experts be appointed.  In cases where a registration decision
+
  Experts be appointed.  In cases where a registration decision
      could be perceived as creating a conflict of interest for a
+
  could be perceived as creating a conflict of interest for a
      particular Expert, that Expert should defer to the judgment of the
+
  particular Expert, that Expert should defer to the judgment of the
      other Experts.
+
  other Experts.
  
  CBOR Major Type:
+
CBOR Major Type:
      CBOR Major type and optional tag for the parameter.
+
  CBOR Major type and optional tag for the parameter.
  
  Change Controller:
+
Change Controller:
      For Standards Track RFCs, list the "IESG".  For others, give the
+
  For Standards Track RFCs, list the "IESG".  For others, give the
      name of the responsible party.  Other details (e.g., email
+
  name of the responsible party.  Other details (e.g., email
      address) may also be included.
+
  address) may also be included.
  
  Specification Document(s):
+
Specification Document(s):
      Reference to the document or documents that specify the parameter,
+
  Reference to the document or documents that specify the parameter,
      preferably including URIs that can be used to retrieve copies of
+
  preferably including URIs that can be used to retrieve copies of
      the documents.  An indication of the relevant sections may also be
+
  the documents.  An indication of the relevant sections may also be
      included but is not required.
+
  included but is not required.
  
9.6.1.2.  Initial Subregistry Content
+
===== Initial Subregistry Content =====
  
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | Parameter Name      | CBOR Key  |CBOR | Change  | Specification |
+
| Parameter Name      | CBOR Key  |CBOR | Change  | Specification |
  |                    | Value      |Major|Controller| Document(s)  |
+
|                    | Value      |Major|Controller| Document(s)  |
  |                    |            |Type |          |              |
+
|                    |            |Type |          |              |
  +=====================+============+=====+==========+===============+
+
+=====================+============+=====+==========+===============+
  | Reserved            | 0          |    |          | [RFC8782]    |
+
| Reserved            | 0          |    |          | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | ietf-dots-signal-  | 1          | 5  | IESG    | [RFC8782]    |
+
| ietf-dots-signal-  | 1          | 5  | IESG    | [[RFC8782]]    |
  | channel:mitigation- |            |    |          |              |
+
| channel:mitigation- |            |    |          |              |
  | scope              |            |    |          |              |
+
| scope              |            |    |          |              |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | scope              | 2          | 4  | IESG    | [RFC8782]    |
+
| scope              | 2          | 4  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | cdid                | 3          | 3  | IESG    | [RFC8782]    |
+
| cdid                | 3          | 3  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | cuid                | 4          | 3  | IESG    | [RFC8782]    |
+
| cuid                | 4          | 3  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | mid                | 5          | 0  | IESG    | [RFC8782]    |
+
| mid                | 5          | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | target-prefix      | 6          | 4  | IESG    | [RFC8782]    |
+
| target-prefix      | 6          | 4  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | target-port-range  | 7          | 4  | IESG    | [RFC8782]    |
+
| target-port-range  | 7          | 4  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | lower-port          | 8          | 0  | IESG    | [RFC8782]    |
+
| lower-port          | 8          | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | upper-port          | 9          | 0  | IESG    | [RFC8782]    |
+
| upper-port          | 9          | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | target-protocol    | 10        | 4  | IESG    | [RFC8782]    |
+
| target-protocol    | 10        | 4  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | target-fqdn        | 11        | 4  | IESG    | [RFC8782]    |
+
| target-fqdn        | 11        | 4  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | target-uri          | 12        | 4  | IESG    | [RFC8782]    |
+
| target-uri          | 12        | 4  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | alias-name          | 13        | 4  | IESG    | [RFC8782]    |
+
| alias-name          | 13        | 4  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | lifetime            | 14        | 0/1 | IESG    | [RFC8782]    |
+
| lifetime            | 14        | 0/1 | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | mitigation-start    | 15        | 0  | IESG    | [RFC8782]    |
+
| mitigation-start    | 15        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | status              | 16        | 0  | IESG    | [RFC8782]    |
+
| status              | 16        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  |conflict-information | 17        | 5  | IESG    | [RFC8782]    |
+
|conflict-information | 17        | 5  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | conflict-status    | 18        | 0  | IESG    | [RFC8782]    |
+
| conflict-status    | 18        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | conflict-cause      | 19        | 0  | IESG    | [RFC8782]    |
+
| conflict-cause      | 19        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | retry-timer        | 20        | 0  | IESG    | [RFC8782]    |
+
| retry-timer        | 20        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | conflict-scope      | 21        | 5  | IESG    | [RFC8782]    |
+
| conflict-scope      | 21        | 5  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | acl-list            | 22        | 4  | IESG    | [RFC8782]    |
+
| acl-list            | 22        | 4  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | acl-name            | 23        | 3  | IESG    | [RFC8782]    |
+
| acl-name            | 23        | 3  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | acl-type            | 24        | 3  | IESG    | [RFC8782]    |
+
| acl-type            | 24        | 3  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | bytes-dropped      | 25        | 0  | IESG    | [RFC8782]    |
+
| bytes-dropped      | 25        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | bps-dropped        | 26        | 0  | IESG    | [RFC8782]    |
+
| bps-dropped        | 26        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | pkts-dropped        | 27        | 0  | IESG    | [RFC8782]    |
+
| pkts-dropped        | 27        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | pps-dropped        | 28        | 0  | IESG    | [RFC8782]    |
+
| pps-dropped        | 28        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | attack-status      | 29        | 0  | IESG    | [RFC8782]    |
+
| attack-status      | 29        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | ietf-dots-signal-  | 30        | 5  | IESG    | [RFC8782]    |
+
| ietf-dots-signal-  | 30        | 5  | IESG    | [[RFC8782]]    |
  |channel:signal-config|            |    |          |              |
+
|channel:signal-config|            |    |          |              |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | sid                | 31        | 0  | IESG    | [RFC8782]    |
+
| sid                | 31        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | mitigating-config  | 32        | 5  | IESG    | [RFC8782]    |
+
| mitigating-config  | 32        | 5  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | heartbeat-interval  | 33        | 5  | IESG    | [RFC8782]    |
+
| heartbeat-interval  | 33        | 5  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | min-value          | 34        | 0  | IESG    | [RFC8782]    |
+
| min-value          | 34        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | max-value          | 35        | 0  | IESG    | [RFC8782]    |
+
| max-value          | 35        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | current-value      | 36        | 0  | IESG    | [RFC8782]    |
+
| current-value      | 36        | 0  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | missing-hb-allowed  | 37        | 5  | IESG    | [RFC8782]    |
+
| missing-hb-allowed  | 37        | 5  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | max-retransmit      | 38        | 5  | IESG    | [RFC8782]    |
+
| max-retransmit      | 38        | 5  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | ack-timeout        | 39        | 5  | IESG    | [RFC8782]    |
+
| ack-timeout        | 39        | 5  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | ack-random-factor  | 40        | 5  | IESG    | [RFC8782]    |
+
| ack-random-factor  | 40        | 5  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | min-value-decimal  | 41        |6tag4| IESG    | [RFC8782]    |
+
| min-value-decimal  | 41        |6tag4| IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | max-value-decimal  | 42        |6tag4| IESG    | [RFC8782]    |
+
| max-value-decimal  | 42        |6tag4| IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  |current-value-decimal| 43        |6tag4| IESG    | [RFC8782]    |
+
|current-value-decimal| 43        |6tag4| IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | idle-config        | 44        | 5  | IESG    | [RFC8782]    |
+
| idle-config        | 44        | 5  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | trigger-mitigation  | 45        | 7  | IESG    | [RFC8782]    |
+
| trigger-mitigation  | 45        | 7  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | ietf-dots-signal-  | 46        | 5  | IESG    | [RFC8782]    |
+
| ietf-dots-signal-  | 46        | 5  | IESG    | [[RFC8782]]    |
  | channel:redirected- |            |    |          |              |
+
| channel:redirected- |            |    |          |              |
  | signal              |            |    |          |              |
+
| signal              |            |    |          |              |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | alt-server          | 47        | 3  | IESG    | [RFC8782]    |
+
| alt-server          | 47        | 3  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | alt-server-record  | 48        | 4  | IESG    | [RFC8782]    |
+
| alt-server-record  | 48        | 4  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | ietf-dots-signal-  | 49        | 5  | IESG    | [RFC8782]    |
+
| ietf-dots-signal-  | 49        | 5  | IESG    | [[RFC8782]]    |
  | channel:heartbeat  |            |    |          |              |
+
| channel:heartbeat  |            |    |          |              |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | probing-rate        | 50        | 5  | IESG    | [RFC8782]    |
+
| probing-rate        | 50        | 5  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | peer-hb-status      | 51        | 7  | IESG    | [RFC8782]    |
+
| peer-hb-status      | 51        | 7  | IESG    | [[RFC8782]]    |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  | Unassigned          | 52-49151  |    |          |              |
+
| Unassigned          | 52-49151  |    |          |              |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  |Reserved for Private |49152-65535 |    |          | [RFC8782]    |
+
|Reserved for Private |49152-65535 |    |          | [[RFC8782]]    |
  | Use                |            |    |          |              |
+
| Use                |            |    |          |              |
  +---------------------+------------+-----+----------+---------------+
+
+---------------------+------------+-----+----------+---------------+
  
      Table 7: Initial DOTS Signal Channel CBOR Key Values Registry
+
    Table 7: Initial DOTS Signal Channel CBOR Key Values Registry
  
9.6.2.  Status Codes Subregistry
+
==== Status Codes Subregistry ====
  
  IANA has created a new subregistry titled "DOTS Signal Channel Status
+
IANA has created a new subregistry titled "DOTS Signal Channel Status
  Codes".  Codes in this registry are used as valid values of 'status'
+
Codes".  Codes in this registry are used as valid values of 'status'
  parameter.
+
parameter.
  
  The registry is initially populated with the following values:
+
The registry is initially populated with the following values:
  
    +--------------+---------------+----------------------+-----------+
+
+--------------+---------------+----------------------+-----------+
    |        Code | Label        | Description          | Reference |
+
|        Code | Label        | Description          | Reference |
    +==============+===============+======================+===========+
+
+==============+===============+======================+===========+
    |            0 | Reserved      |                      | [RFC8782] |
+
|            0 | Reserved      |                      | [[RFC8782]] |
    +--------------+---------------+----------------------+-----------+
+
+--------------+---------------+----------------------+-----------+
    |            1 | attack-      | Attack mitigation    | [RFC8782] |
+
|            1 | attack-      | Attack mitigation    | [[RFC8782]] |
    |              | mitigation-  | setup is in progress |          |
+
|              | mitigation-  | setup is in progress |          |
    |              | in-progress  | (e.g., changing the  |          |
+
|              | in-progress  | (e.g., changing the  |          |
    |              |              | network path to      |          |
+
|              |              | network path to      |          |
    |              |              | redirect the inbound |          |
+
|              |              | redirect the inbound |          |
    |              |              | traffic to a DOTS    |          |
+
|              |              | traffic to a DOTS    |          |
    |              |              | mitigator).          |          |
+
|              |              | mitigator).          |          |
    +--------------+---------------+----------------------+-----------+
+
+--------------+---------------+----------------------+-----------+
    |            2 | attack-      | Attack is being      | [RFC8782] |
+
|            2 | attack-      | Attack is being      | [[RFC8782]] |
    |              | successfully- | successfully        |          |
+
|              | successfully- | successfully        |          |
    |              | mitigated    | mitigated (e.g.,    |          |
+
|              | mitigated    | mitigated (e.g.,    |          |
    |              |              | traffic is          |          |
+
|              |              | traffic is          |          |
    |              |              | redirected to a DDoS |          |
+
|              |              | redirected to a DDoS |          |
    |              |              | mitigator and attack |          |
+
|              |              | mitigator and attack |          |
    |              |              | traffic is dropped). |          |
+
|              |              | traffic is dropped). |          |
    +--------------+---------------+----------------------+-----------+
+
+--------------+---------------+----------------------+-----------+
    |            3 | attack-      | Attack has stopped  | [RFC8782] |
+
|            3 | attack-      | Attack has stopped  | [[RFC8782]] |
    |              | stopped      | and the DOTS client  |          |
+
|              | stopped      | and the DOTS client  |          |
    |              |              | can withdraw the    |          |
+
|              |              | can withdraw the    |          |
    |              |              | mitigation request.  |          |
+
|              |              | mitigation request.  |          |
    +--------------+---------------+----------------------+-----------+
+
+--------------+---------------+----------------------+-----------+
    |            4 | attack-      | Attack has exceeded  | [RFC8782] |
+
|            4 | attack-      | Attack has exceeded  | [[RFC8782]] |
    |              | exceeded-    | the mitigation      |          |
+
|              | exceeded-    | the mitigation      |          |
    |              | capability    | provider capability. |          |
+
|              | capability    | provider capability. |          |
    +--------------+---------------+----------------------+-----------+
+
+--------------+---------------+----------------------+-----------+
    |            5 | dots-client-  | DOTS client has      | [RFC8782] |
+
|            5 | dots-client-  | DOTS client has      | [[RFC8782]] |
    |              | withdrawn-    | withdrawn the        |          |
+
|              | withdrawn-    | withdrawn the        |          |
    |              | mitigation    | mitigation request  |          |
+
|              | mitigation    | mitigation request  |          |
    |              |              | and the mitigation  |          |
+
|              |              | and the mitigation  |          |
    |              |              | is active but        |          |
+
|              |              | is active but        |          |
    |              |              | terminating.        |          |
+
|              |              | terminating.        |          |
    +--------------+---------------+----------------------+-----------+
+
+--------------+---------------+----------------------+-----------+
    |            6 | attack-      | Attack mitigation is | [RFC8782] |
+
|            6 | attack-      | Attack mitigation is | [[RFC8782]] |
    |              | mitigation-  | now terminated.      |          |
+
|              | mitigation-  | now terminated.      |          |
    |              | terminated    |                      |          |
+
|              | terminated    |                      |          |
    +--------------+---------------+----------------------+-----------+
+
+--------------+---------------+----------------------+-----------+
    |            7 | attack-      | Attack mitigation is | [RFC8782] |
+
|            7 | attack-      | Attack mitigation is | [[RFC8782]] |
    |              | mitigation-  | withdrawn.          |          |
+
|              | mitigation-  | withdrawn.          |          |
    |              | withdrawn    |                      |          |
+
|              | withdrawn    |                      |          |
    +--------------+---------------+----------------------+-----------+
+
+--------------+---------------+----------------------+-----------+
    |            8 | attack-      | Attack mitigation    | [RFC8782] |
+
|            8 | attack-      | Attack mitigation    | [[RFC8782]] |
    |              | mitigation-  | will be triggered    |          |
+
|              | mitigation-  | will be triggered    |          |
    |              | signal-loss  | for the mitigation  |          |
+
|              | signal-loss  | for the mitigation  |          |
    |              |              | request only when    |          |
+
|              |              | request only when    |          |
    |              |              | the DOTS signal      |          |
+
|              |              | the DOTS signal      |          |
    |              |              | channel session is  |          |
+
|              |              | channel session is  |          |
    |              |              | lost.                |          |
+
|              |              | lost.                |          |
    +--------------+---------------+----------------------+-----------+
+
+--------------+---------------+----------------------+-----------+
    | 9-2147483647 | Unassigned    |                      |          |
+
| 9-2147483647 | Unassigned    |                      |          |
    +--------------+---------------+----------------------+-----------+
+
+--------------+---------------+----------------------+-----------+
  
            Table 8: Initial DOTS Signal Channel Status Codes
+
          Table 8: Initial DOTS Signal Channel Status Codes
  
  New codes can be assigned via Standards Action [RFC8126].
+
New codes can be assigned via Standards Action [[RFC8126]].
  
9.6.3.  Conflict Status Codes Subregistry
+
==== Conflict Status Codes Subregistry ====
  
  IANA has created a new subregistry titled "DOTS Signal Channel
+
IANA has created a new subregistry titled "DOTS Signal Channel
  Conflict Status Codes".  Codes in this registry are used as valid
+
Conflict Status Codes".  Codes in this registry are used as valid
  values of 'conflict-status' parameter.
+
values of 'conflict-status' parameter.
  
  The registry is initially populated with the following values:
+
The registry is initially populated with the following values:
  
  +--------------+-------------------+--------------------+-----------+
+
+--------------+-------------------+--------------------+-----------+
  |        Code | Label            | Description        | Reference |
+
|        Code | Label            | Description        | Reference |
  +==============+===================+====================+===========+
+
+==============+===================+====================+===========+
  |            0 | Reserved          |                    | [RFC8782] |
+
|            0 | Reserved          |                    | [[RFC8782]] |
  +--------------+-------------------+--------------------+-----------+
+
+--------------+-------------------+--------------------+-----------+
  |            1 | request-inactive- | DOTS server        | [RFC8782] |
+
|            1 | request-inactive- | DOTS server        | [[RFC8782]] |
  |              | other-active      | has detected      |          |
+
|              | other-active      | has detected      |          |
  |              |                  | conflicting        |          |
+
|              |                  | conflicting        |          |
  |              |                  | mitigation        |          |
+
|              |                  | mitigation        |          |
  |              |                  | requests from      |          |
+
|              |                  | requests from      |          |
  |              |                  | different DOTS    |          |
+
|              |                  | different DOTS    |          |
  |              |                  | clients.  This    |          |
+
|              |                  | clients.  This    |          |
  |              |                  | mitigation        |          |
+
|              |                  | mitigation        |          |
  |              |                  | request is        |          |
+
|              |                  | request is        |          |
  |              |                  | currently          |          |
+
|              |                  | currently          |          |
  |              |                  | inactive until    |          |
+
|              |                  | inactive until    |          |
  |              |                  | the conflicts      |          |
+
|              |                  | the conflicts      |          |
  |              |                  | are resolved.      |          |
+
|              |                  | are resolved.      |          |
  |              |                  | Another            |          |
+
|              |                  | Another            |          |
  |              |                  | mitigation        |          |
+
|              |                  | mitigation        |          |
  |              |                  | request is        |          |
+
|              |                  | request is        |          |
  |              |                  | active.            |          |
+
|              |                  | active.            |          |
  +--------------+-------------------+--------------------+-----------+
+
+--------------+-------------------+--------------------+-----------+
  |            2 | request-active    | DOTS server        | [RFC8782] |
+
|            2 | request-active    | DOTS server        | [[RFC8782]] |
  |              |                  | has detected      |          |
+
|              |                  | has detected      |          |
  |              |                  | conflicting        |          |
+
|              |                  | conflicting        |          |
  |              |                  | mitigation        |          |
+
|              |                  | mitigation        |          |
  |              |                  | requests from      |          |
+
|              |                  | requests from      |          |
  |              |                  | different DOTS    |          |
+
|              |                  | different DOTS    |          |
  |              |                  | clients.  This    |          |
+
|              |                  | clients.  This    |          |
  |              |                  | mitigation        |          |
+
|              |                  | mitigation        |          |
  |              |                  | request is        |          |
+
|              |                  | request is        |          |
  |              |                  | currently          |          |
+
|              |                  | currently          |          |
  |              |                  | active.            |          |
+
|              |                  | active.            |          |
  +--------------+-------------------+--------------------+-----------+
+
+--------------+-------------------+--------------------+-----------+
  |            3 | all-requests-    | DOTS server        | [RFC8782] |
+
|            3 | all-requests-    | DOTS server        | [[RFC8782]] |
  |              | inactive          | has detected      |          |
+
|              | inactive          | has detected      |          |
  |              |                  | conflicting        |          |
+
|              |                  | conflicting        |          |
  |              |                  | mitigation        |          |
+
|              |                  | mitigation        |          |
  |              |                  | requests from      |          |
+
|              |                  | requests from      |          |
  |              |                  | different DOTS    |          |
+
|              |                  | different DOTS    |          |
  |              |                  | clients.  All      |          |
+
|              |                  | clients.  All      |          |
  |              |                  | conflicting        |          |
+
|              |                  | conflicting        |          |
  |              |                  | mitigation        |          |
+
|              |                  | mitigation        |          |
  |              |                  | requests are      |          |
+
|              |                  | requests are      |          |
  |              |                  | inactive.          |          |
+
|              |                  | inactive.          |          |
  +--------------+-------------------+--------------------+-----------+
+
+--------------+-------------------+--------------------+-----------+
  | 4-2147483647 | Unassigned        |                    |          |
+
| 4-2147483647 | Unassigned        |                    |          |
  +--------------+-------------------+--------------------+-----------+
+
+--------------+-------------------+--------------------+-----------+
  
        Table 9: Initial DOTS Signal Channel Conflict Status Codes
+
      Table 9: Initial DOTS Signal Channel Conflict Status Codes
  
  New codes can be assigned via Standards Action [RFC8126].
+
New codes can be assigned via Standards Action [[RFC8126]].
  
9.6.4.  Conflict Cause Codes Subregistry
+
==== Conflict Cause Codes Subregistry ====
  
  IANA has created a new subregistry titled "DOTS Signal Channel
+
IANA has created a new subregistry titled "DOTS Signal Channel
  Conflict Cause Codes".  Codes in this registry are used as valid
+
Conflict Cause Codes".  Codes in this registry are used as valid
  values of 'conflict-cause' parameter.
+
values of 'conflict-cause' parameter.
  
  The registry is initially populated with the following values:
+
The registry is initially populated with the following values:
  
    +--------------+---------------------+----------------+-----------+
+
+--------------+---------------------+----------------+-----------+
    |        Code | Label              | Description    | Reference |
+
|        Code | Label              | Description    | Reference |
    +==============+=====================+================+===========+
+
+==============+=====================+================+===========+
    |            0 | Reserved            |                | [RFC8782] |
+
|            0 | Reserved            |                | [[RFC8782]] |
    +--------------+---------------------+----------------+-----------+
+
+--------------+---------------------+----------------+-----------+
    |            1 | overlapping-targets | Overlapping    | [RFC8782] |
+
|            1 | overlapping-targets | Overlapping    | [[RFC8782]] |
    |              |                    | targets.      |          |
+
|              |                    | targets.      |          |
    +--------------+---------------------+----------------+-----------+
+
+--------------+---------------------+----------------+-----------+
    |            2 | conflict-with-      | Conflicts with | [RFC8782] |
+
|            2 | conflict-with-      | Conflicts with | [[RFC8782]] |
    |              | acceptlist          | an existing    |          |
+
|              | acceptlist          | an existing    |          |
    |              |                    | accept-list.  |          |
+
|              |                    | accept-list.  |          |
    |              |                    | This code is  |          |
+
|              |                    | This code is  |          |
    |              |                    | returned when  |          |
+
|              |                    | returned when  |          |
    |              |                    | the DDoS      |          |
+
|              |                    | the DDoS      |          |
    |              |                    | mitigation    |          |
+
|              |                    | mitigation    |          |
    |              |                    | detects source |          |
+
|              |                    | detects source |          |
    |              |                    | addresses/    |          |
+
|              |                    | addresses/    |          |
    |              |                    | prefixes in    |          |
+
|              |                    | prefixes in    |          |
    |              |                    | the accept-    |          |
+
|              |                    | the accept-    |          |
    |              |                    | listed ACLs    |          |
+
|              |                    | listed ACLs    |          |
    |              |                    | are attacking  |          |
+
|              |                    | are attacking  |          |
    |              |                    | the target.    |          |
+
|              |                    | the target.    |          |
    +--------------+---------------------+----------------+-----------+
+
+--------------+---------------------+----------------+-----------+
    |            3 | cuid-collision      | CUID          | [RFC8782] |
+
|            3 | cuid-collision      | CUID          | [[RFC8782]] |
    |              |                    | Collision.    |          |
+
|              |                    | Collision.    |          |
    |              |                    | This code is  |          |
+
|              |                    | This code is  |          |
    |              |                    | returned when  |          |
+
|              |                    | returned when  |          |
    |              |                    | a DOTS client  |          |
+
|              |                    | a DOTS client  |          |
    |              |                    | uses a 'cuid'  |          |
+
|              |                    | uses a 'cuid'  |          |
    |              |                    | that is        |          |
+
|              |                    | that is        |          |
    |              |                    | already used  |          |
+
|              |                    | already used  |          |
    |              |                    | by another    |          |
+
|              |                    | by another    |          |
    |              |                    | DOTS client.  |          |
+
|              |                    | DOTS client.  |          |
    +--------------+---------------------+----------------+-----------+
+
+--------------+---------------------+----------------+-----------+
    | 4-2147483647 | Unassigned          |                |          |
+
| 4-2147483647 | Unassigned          |                |          |
    +--------------+---------------------+----------------+-----------+
+
+--------------+---------------------+----------------+-----------+
  
        Table 10: Initial DOTS Signal Channel Conflict Cause Codes
+
      Table 10: Initial DOTS Signal Channel Conflict Cause Codes
  
  New codes can be assigned via Standards Action [RFC8126].
+
New codes can be assigned via Standards Action [[RFC8126]].
  
9.6.5.  Attack Status Codes Subregistry
+
==== Attack Status Codes Subregistry ====
  
  IANA has created a new subregistry titled "DOTS Signal Channel Attack
+
IANA has created a new subregistry titled "DOTS Signal Channel Attack
  Status Codes".  Codes in this registry are used as valid values of
+
Status Codes".  Codes in this registry are used as valid values of
  'attack-status' parameter.
+
'attack-status' parameter.
  
  The registry is initially populated with the following values:
+
The registry is initially populated with the following values:
  
  +--------------+----------------------+-----------------+-----------+
+
+--------------+----------------------+-----------------+-----------+
  |        Code | Label                | Description    | Reference |
+
|        Code | Label                | Description    | Reference |
  +==============+======================+=================+===========+
+
+==============+======================+=================+===========+
  |            0 | Reserved            |                | [RFC8782] |
+
|            0 | Reserved            |                | [[RFC8782]] |
  +--------------+----------------------+-----------------+-----------+
+
+--------------+----------------------+-----------------+-----------+
  |            1 | under-attack        | The DOTS        | [RFC8782] |
+
|            1 | under-attack        | The DOTS        | [[RFC8782]] |
  |              |                      | client          |          |
+
|              |                      | client          |          |
  |              |                      | determines      |          |
+
|              |                      | determines      |          |
  |              |                      | that it is      |          |
+
|              |                      | that it is      |          |
  |              |                      | still under    |          |
+
|              |                      | still under    |          |
  |              |                      | attack.        |          |
+
|              |                      | attack.        |          |
  +--------------+----------------------+-----------------+-----------+
+
+--------------+----------------------+-----------------+-----------+
  |            2 | attack-successfully- | The DOTS        | [RFC8782] |
+
|            2 | attack-successfully- | The DOTS        | [[RFC8782]] |
  |              | mitigated            | client          |          |
+
|              | mitigated            | client          |          |
  |              |                      | determines      |          |
+
|              |                      | determines      |          |
  |              |                      | that the        |          |
+
|              |                      | that the        |          |
  |              |                      | attack is      |          |
+
|              |                      | attack is      |          |
  |              |                      | successfully    |          |
+
|              |                      | successfully    |          |
  |              |                      | mitigated.      |          |
+
|              |                      | mitigated.      |          |
  +--------------+----------------------+-----------------+-----------+
+
+--------------+----------------------+-----------------+-----------+
  | 3-2147483647 | Unassigned          |                |          |
+
| 3-2147483647 | Unassigned          |                |          |
  +--------------+----------------------+-----------------+-----------+
+
+--------------+----------------------+-----------------+-----------+
  
        Table 11: Initial DOTS Signal Channel Attack Status Codes
+
      Table 11: Initial DOTS Signal Channel Attack Status Codes
  
  New codes can be assigned via Standards Action [RFC8126].
+
New codes can be assigned via Standards Action [[RFC8126]].
  
9.7.  DOTS Signal Channel YANG Modules
+
=== DOTS Signal Channel YANG Modules ===
  
  IANA has registered the following URIs in the "ns" subregistry within
+
IANA has registered the following URIs in the "ns" subregistry within
  the "IETF XML Registry" [RFC3688]:
+
the "IETF XML Registry" [[RFC3688]]:
  
      URI:  urn:ietf:params:xml:ns:yang:ietf-dots-signal-channel
+
  URI:  urn:ietf:params:xml:ns:yang:ietf-dots-signal-channel
      Registrant Contact:  The IESG.
+
  Registrant Contact:  The IESG.
      XML:  N/A; the requested URI is an XML namespace.
+
  XML:  N/A; the requested URI is an XML namespace.
  
      URI:  urn:ietf:params:xml:ns:yang:iana-dots-signal-channel
+
  URI:  urn:ietf:params:xml:ns:yang:iana-dots-signal-channel
      Registrant Contact:  IANA.
+
  Registrant Contact:  IANA.
      XML:  N/A; the requested URI is an XML namespace.
+
  XML:  N/A; the requested URI is an XML namespace.
  
  IANA has registered the following YANG modules in the "YANG Module
+
IANA has registered the following YANG modules in the "YANG Module
  Names" subregistry [RFC7950] within the "YANG Parameters" registry.
+
Names" subregistry [[RFC7950]] within the "YANG Parameters" registry.
  
      Name:  ietf-dots-signal-channel
+
  Name:  ietf-dots-signal-channel
      Maintained by IANA:  N
+
  Maintained by IANA:  N
      Namespace:  urn:ietf:params:xml:ns:yang:ietf-dots-signal-channel
+
  Namespace:  urn:ietf:params:xml:ns:yang:ietf-dots-signal-channel
      Prefix:  signal
+
  Prefix:  signal
      Reference:  RFC8782
+
  Reference:  RFC8782
  
      Name:  iana-dots-signal-channel
+
  Name:  iana-dots-signal-channel
      Maintained by IANA:  Y
+
  Maintained by IANA:  Y
      Namespace:  urn:ietf:params:xml:ns:yang:iana-dots-signal-channel
+
  Namespace:  urn:ietf:params:xml:ns:yang:iana-dots-signal-channel
      Prefix:  iana-signal
+
  Prefix:  iana-signal
      Reference:  RFC8782
+
  Reference:  RFC8782
  
  This document defines the initial version of the IANA-maintained
+
This document defines the initial version of the IANA-maintained
  iana-dots-signal-channel YANG module.  IANA has added this note:
+
iana-dots-signal-channel YANG module.  IANA has added this note:
  
      Status, conflict status, conflict cause, and attack status values
+
  Status, conflict status, conflict cause, and attack status values
      must not be directly added to the iana-dots-signal-channel YANG
+
  must not be directly added to the iana-dots-signal-channel YANG
      module.  They must instead be respectively added to the "DOTS
+
  module.  They must instead be respectively added to the "DOTS
      Status Codes", "DOTS Conflict Status Codes", "DOTS Conflict Cause
+
  Status Codes", "DOTS Conflict Status Codes", "DOTS Conflict Cause
      Codes", and "DOTS Attack Status Codes" registries.
+
  Codes", and "DOTS Attack Status Codes" registries.
  
  When a 'status', 'conflict-status', 'conflict-cause', or 'attack-
+
When a 'status', 'conflict-status', 'conflict-cause', or 'attack-
  status' value is respectively added to the "DOTS Status Codes", "DOTS
+
status' value is respectively added to the "DOTS Status Codes", "DOTS
  Conflict Status Codes", "DOTS Conflict Cause Codes", or "DOTS Attack
+
Conflict Status Codes", "DOTS Conflict Cause Codes", or "DOTS Attack
  Status Codes" registry, a new "enum" statement must be added to the
+
Status Codes" registry, a new "enum" statement must be added to the
  iana-dots-signal-channel YANG module.  The following "enum"
+
iana-dots-signal-channel YANG module.  The following "enum"
  statement, and substatements thereof, should be defined:
+
statement, and substatements thereof, should be defined:
  
  "enum":        Replicates the label from the registry.
+
"enum":        Replicates the label from the registry.
  
  "value":      Contains the IANA-assigned value corresponding to the
+
"value":      Contains the IANA-assigned value corresponding to the
                  'status', 'conflict-status', 'conflict-cause', or
+
              'status', 'conflict-status', 'conflict-cause', or
                  'attack-status'.
+
              'attack-status'.
  
  "description":  Replicates the description from the registry.
+
"description":  Replicates the description from the registry.
  
  "reference":  Replicates the reference from the registry and adds
+
"reference":  Replicates the reference from the registry and adds
                  the title of the document.
+
              the title of the document.
  
  When the iana-dots-signal-channel YANG module is updated, a new
+
When the iana-dots-signal-channel YANG module is updated, a new
  "revision" statement must be added in front of the existing revision
+
"revision" statement must be added in front of the existing revision
  statements.
+
statements.
  
  IANA added this note to "DOTS Status Codes", "DOTS Conflict Status
+
IANA added this note to "DOTS Status Codes", "DOTS Conflict Status
  Codes", "DOTS Conflict Cause Codes", and "DOTS Attack Status Codes"
+
Codes", "DOTS Conflict Cause Codes", and "DOTS Attack Status Codes"
  registries:
+
registries:
  
      When this registry is modified, the YANG module iana-dots-signal-
+
  When this registry is modified, the YANG module iana-dots-signal-
      channel must be updated as defined in [RFC8782].
+
  channel must be updated as defined in [[RFC8782]].
  
 
10.  Security Considerations
 
10.  Security Considerations
  
  High-level DOTS security considerations are documented in [RFC8612]
+
High-level DOTS security considerations are documented in [[RFC8612]]
  and [DOTS-ARCH].
+
and [DOTS-ARCH].
  
  Authenticated encryption MUST be used for data confidentiality and
+
Authenticated encryption MUST be used for data confidentiality and
  message integrity.  The interaction between the DOTS agents requires
+
message integrity.  The interaction between the DOTS agents requires
  Datagram Transport Layer Security (DTLS) or Transport Layer Security
+
Datagram Transport Layer Security (DTLS) or Transport Layer Security
  (TLS) with a cipher suite offering confidentiality protection, and
+
(TLS) with a cipher suite offering confidentiality protection, and
  the guidance given in [RFC7525] MUST be followed to avoid attacks on
+
the guidance given in [[RFC7525]] MUST be followed to avoid attacks on
  (D)TLS.  The (D)TLS protocol profile used for the DOTS signal channel
+
(D)TLS.  The (D)TLS protocol profile used for the DOTS signal channel
  is specified in Section 7.
+
is specified in Section 7.
  
  If TCP is used between DOTS agents, an attacker may be able to inject
+
If TCP is used between DOTS agents, an attacker may be able to inject
  RST packets, bogus application segments, etc., regardless of whether
+
RST packets, bogus application segments, etc., regardless of whether
  TLS authentication is used.  Because the application data is TLS
+
TLS authentication is used.  Because the application data is TLS
  protected, this will not result in the application receiving bogus
+
protected, this will not result in the application receiving bogus
  data, but it will constitute a DoS on the connection.  This attack
+
data, but it will constitute a DoS on the connection.  This attack
  can be countered by using TCP Authentication Option (TCP-AO)
+
can be countered by using TCP Authentication Option (TCP-AO)
  [RFC5925].  Although not widely adopted, if TCP-AO is used, then any
+
[[RFC5925]].  Although not widely adopted, if TCP-AO is used, then any
  bogus packets injected by an attacker will be rejected by the TCP-AO
+
bogus packets injected by an attacker will be rejected by the TCP-AO
  integrity check and therefore will never reach the TLS layer.
+
integrity check and therefore will never reach the TLS layer.
  
  If the 'cuid' is guessable, a misbehaving DOTS client from within the
+
If the 'cuid' is guessable, a misbehaving DOTS client from within the
  client's domain can use the 'cuid' of another DOTS client of the
+
client's domain can use the 'cuid' of another DOTS client of the
  domain to delete or alter active mitigations.  For this attack vector
+
domain to delete or alter active mitigations.  For this attack vector
  to happen, the misbehaving client needs to pass the security
+
to happen, the misbehaving client needs to pass the security
  validation checks by the DOTS server, and eventually the checks of a
+
validation checks by the DOTS server, and eventually the checks of a
  client-domain DOTS gateway.
+
client-domain DOTS gateway.
  
  A similar attack can be achieved by a compromised DOTS client that
+
A similar attack can be achieved by a compromised DOTS client that
  can sniff the TLS 1.2 handshake, use the client certificate to
+
can sniff the TLS 1.2 handshake, use the client certificate to
  identify the 'cuid' used by another DOTS client.  This attack is not
+
identify the 'cuid' used by another DOTS client.  This attack is not
  possible if algorithms such as version 4 Universally Unique
+
possible if algorithms such as version 4 Universally Unique
  IDentifiers (UUIDs) in Section 4.4 of [RFC4122] are used to generate
+
IDentifiers (UUIDs) in Section 4.4 of [[RFC4122]] are used to generate
  the 'cuid' because such UUIDs are not a deterministic function of the
+
the 'cuid' because such UUIDs are not a deterministic function of the
  client certificate.  Likewise, this attack is not possible with TLS
+
client certificate.  Likewise, this attack is not possible with TLS
  1.3 because most of the TLS handshake is encrypted and the client
+
1.3 because most of the TLS handshake is encrypted and the client
  certificate is not visible to eavesdroppers.
+
certificate is not visible to eavesdroppers.
  
  A compromised DOTS client can collude with a DDoS attacker to send
+
A compromised DOTS client can collude with a DDoS attacker to send
  mitigation request for a target resource, get the mitigation efficacy
+
mitigation request for a target resource, get the mitigation efficacy
  from the DOTS server, and convey the mitigation efficacy to the DDoS
+
from the DOTS server, and convey the mitigation efficacy to the DDoS
  attacker to possibly change the DDoS attack strategy.  Obviously,
+
attacker to possibly change the DDoS attack strategy.  Obviously,
  signaling an attack by the compromised DOTS client to the DOTS server
+
signaling an attack by the compromised DOTS client to the DOTS server
  will trigger attack mitigation.  This attack can be prevented by
+
will trigger attack mitigation.  This attack can be prevented by
  monitoring and auditing DOTS clients to detect misbehavior and to
+
monitoring and auditing DOTS clients to detect misbehavior and to
  deter misuse, and by only authorizing the DOTS client to request
+
deter misuse, and by only authorizing the DOTS client to request
  mitigation for specific target resources (e.g., an application server
+
mitigation for specific target resources (e.g., an application server
  is authorized to request mitigation for its IP addresses, but a DDoS
+
is authorized to request mitigation for its IP addresses, but a DDoS
  mitigator can request mitigation for any target resource in the
+
mitigator can request mitigation for any target resource in the
  network).  Furthermore, DOTS clients are typically co-located on
+
network).  Furthermore, DOTS clients are typically co-located on
  network security services (e.g., firewall), and a compromised
+
network security services (e.g., firewall), and a compromised
  security service potentially can do a lot more damage to the network.
+
security service potentially can do a lot more damage to the network.
  
  Rate-limiting DOTS requests, including those with new 'cuid' values,
+
Rate-limiting DOTS requests, including those with new 'cuid' values,
  from the same DOTS client defend against DoS attacks that would
+
from the same DOTS client defend against DoS attacks that would
  result in varying the 'cuid' to exhaust DOTS server resources.  Rate-
+
result in varying the 'cuid' to exhaust DOTS server resources.  Rate-
  limit policies SHOULD be enforced on DOTS gateways (if deployed) and
+
limit policies SHOULD be enforced on DOTS gateways (if deployed) and
  DOTS servers.
+
DOTS servers.
  
  In order to prevent leaking internal information outside a client's
+
In order to prevent leaking internal information outside a client's
  domain, DOTS gateways located in the client domain SHOULD NOT reveal
+
domain, DOTS gateways located in the client domain SHOULD NOT reveal
  the identification information that pertains to internal DOTS clients
+
the identification information that pertains to internal DOTS clients
  (e.g., source IP address, client's hostname) unless explicitly
+
(e.g., source IP address, client's hostname) unless explicitly
  configured to do so.
+
configured to do so.
  
  DOTS servers MUST verify that requesting DOTS clients are entitled to
+
DOTS servers MUST verify that requesting DOTS clients are entitled to
  trigger actions on a given IP prefix.  That is, only actions on IP
+
trigger actions on a given IP prefix.  That is, only actions on IP
  resources that belong to the DOTS client's domain MUST be authorized
+
resources that belong to the DOTS client's domain MUST be authorized
  by a DOTS server.  The exact mechanism for the DOTS servers to
+
by a DOTS server.  The exact mechanism for the DOTS servers to
  validate that the target prefixes are within the scope of the DOTS
+
validate that the target prefixes are within the scope of the DOTS
  client domain is deployment specific.
+
client domain is deployment specific.
  
  The presence of DOTS gateways may lead to infinite forwarding loops,
+
The presence of DOTS gateways may lead to infinite forwarding loops,
  which is undesirable.  To prevent and detect such loops, this
+
which is undesirable.  To prevent and detect such loops, this
  document uses the Hop-Limit option.
+
document uses the Hop-Limit option.
  
  When FQDNs are used as targets, the DOTS server MUST rely upon DNS
+
When FQDNs are used as targets, the DOTS server MUST rely upon DNS
  privacy-enabling protocols (e.g., DNS over TLS [RFC7858] or DNS over
+
privacy-enabling protocols (e.g., DNS over TLS [[RFC7858]] or DNS over
  HTTPS (DoH) [RFC8484]) to prevent eavesdroppers from possibly
+
HTTPS (DoH) [[RFC8484]]) to prevent eavesdroppers from possibly
  identifying the target resources protected by the DDoS mitigation
+
identifying the target resources protected by the DDoS mitigation
  service to ensure the target FQDN resolution is authentic (e.g.,
+
service to ensure the target FQDN resolution is authentic (e.g.,
  DNSSEC [RFC4034]).
+
DNSSEC [[RFC4034]]).
  
  CoAP-specific security considerations are discussed in Section 11 of
+
CoAP-specific security considerations are discussed in Section 11 of
  [RFC7252], while CBOR-related security considerations are discussed
+
[[RFC7252]], while CBOR-related security considerations are discussed
  in Section 8 of [RFC7049].
+
in Section 8 of [[RFC7049]].
  
 
11.  References
 
11.  References
Line 4,653: Line 4,648:
 
11.1.  Normative References
 
11.1.  Normative References
  
  [RFC0791]  Postel, J., "Internet Protocol", STD 5, RFC 791,
+
[[RFC0791]]  Postel, J., "Internet Protocol", [[STD5|STD 5]], [[RFC791|RFC 791]],
              DOI 10.17487/RFC0791, September 1981,
+
          DOI 10.17487/RFC0791, September 1981,
              <https://www.rfc-editor.org/info/rfc791>.
+
          <https://www.rfc-editor.org/info/rfc791>.
  
  [RFC1122]  Braden, R., Ed., "Requirements for Internet Hosts -
+
[[RFC1122]]  Braden, R., Ed., "Requirements for Internet Hosts -
              Communication Layers", STD 3, RFC 1122,
+
          Communication Layers", [[STD3|STD 3]], [[RFC1122|RFC 1122]],
              DOI 10.17487/RFC1122, October 1989,
+
          DOI 10.17487/RFC1122, October 1989,
              <https://www.rfc-editor.org/info/rfc1122>.
+
          <https://www.rfc-editor.org/info/rfc1122>.
  
  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
+
[[RFC2119]]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
+
          Requirement Levels", [[BCP14|BCP 14]], [[RFC2119|RFC 2119]],
              DOI 10.17487/RFC2119, March 1997,
+
          DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.
+
          <https://www.rfc-editor.org/info/rfc2119>.
  
  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
+
[[RFC3688]]  Mealling, M., "The IETF XML Registry", [[BCP81|BCP 81]], [[RFC3688|RFC 3688]],
              DOI 10.17487/RFC3688, January 2004,
+
          DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.
+
          <https://www.rfc-editor.org/info/rfc3688>.
  
  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
+
[[RFC3986]]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
+
          Resource Identifier (URI): Generic Syntax", [[STD66|STD 66]],
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
+
          [[RFC3986|RFC 3986]], DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/info/rfc3986>.
+
          <https://www.rfc-editor.org/info/rfc3986>.
  
  [RFC4279]  Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
+
[[RFC4279]]  Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
              Ciphersuites for Transport Layer Security (TLS)",
+
          Ciphersuites for Transport Layer Security (TLS)",
              RFC 4279, DOI 10.17487/RFC4279, December 2005,
+
          [[RFC4279|RFC 4279]], DOI 10.17487/RFC4279, December 2005,
              <https://www.rfc-editor.org/info/rfc4279>.
+
          <https://www.rfc-editor.org/info/rfc4279>.
  
  [RFC4632]  Fuller, V. and T. Li, "Classless Inter-domain Routing
+
[[RFC4632]]  Fuller, V. and T. Li, "Classless Inter-domain Routing
              (CIDR): The Internet Address Assignment and Aggregation
+
          (CIDR): The Internet Address Assignment and Aggregation
              Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August
+
          Plan", [[BCP122|BCP 122]], [[RFC4632|RFC 4632]], DOI 10.17487/RFC4632, August
              2006, <https://www.rfc-editor.org/info/rfc4632>.
+
          2006, <https://www.rfc-editor.org/info/rfc4632>.
  
  [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
+
[[RFC4648]]  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
+
          Encodings", [[RFC4648|RFC 4648]], DOI 10.17487/RFC4648, October 2006,
              <https://www.rfc-editor.org/info/rfc4648>.
+
          <https://www.rfc-editor.org/info/rfc4648>.
  
  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
+
[[RFC5246]]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246,
+
          (TLS) Protocol Version 1.2", [[RFC5246|RFC 5246]],
              DOI 10.17487/RFC5246, August 2008,
+
          DOI 10.17487/RFC5246, August 2008,
              <https://www.rfc-editor.org/info/rfc5246>.
+
          <https://www.rfc-editor.org/info/rfc5246>.
  
  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
+
[[RFC5280]]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
+
          Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
+
          Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
+
          (CRL) Profile", [[RFC5280|RFC 5280]], DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.
+
          <https://www.rfc-editor.org/info/rfc5280>.
  
  [RFC6066]  Eastlake 3rd, D., "Transport Layer Security (TLS)
+
[[RFC6066]]  Eastlake 3rd, D., "Transport Layer Security (TLS)
              Extensions: Extension Definitions", RFC 6066,
+
          Extensions: Extension Definitions", [[RFC6066|RFC 6066]],
              DOI 10.17487/RFC6066, January 2011,
+
          DOI 10.17487/RFC6066, January 2011,
              <https://www.rfc-editor.org/info/rfc6066>.
+
          <https://www.rfc-editor.org/info/rfc6066>.
  
  [RFC6125]  Saint-Andre, P. and J. Hodges, "Representation and
+
[[RFC6125]]  Saint-Andre, P. and J. Hodges, "Representation and
              Verification of Domain-Based Application Service Identity
+
          Verification of Domain-Based Application Service Identity
              within Internet Public Key Infrastructure Using X.509
+
          within Internet Public Key Infrastructure Using X.509
              (PKIX) Certificates in the Context of Transport Layer
+
          (PKIX) Certificates in the Context of Transport Layer
              Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
+
          Security (TLS)", [[RFC6125|RFC 6125]], DOI 10.17487/RFC6125, March
              2011, <https://www.rfc-editor.org/info/rfc6125>.
+
          2011, <https://www.rfc-editor.org/info/rfc6125>.
  
  [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
+
[[RFC6347]]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
+
          Security Version 1.2", [[RFC6347|RFC 6347]], DOI 10.17487/RFC6347,
              January 2012, <https://www.rfc-editor.org/info/rfc6347>.
+
          January 2012, <https://www.rfc-editor.org/info/rfc6347>.
  
  [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
+
[[RFC6991]]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
+
          [[RFC6991|RFC 6991]], DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.
+
          <https://www.rfc-editor.org/info/rfc6991>.
  
  [RFC7049]  Bormann, C. and P. Hoffman, "Concise Binary Object
+
[[RFC7049]]  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
+
          Representation (CBOR)", [[RFC7049|RFC 7049]], DOI 10.17487/RFC7049,
              October 2013, <https://www.rfc-editor.org/info/rfc7049>.
+
          October 2013, <https://www.rfc-editor.org/info/rfc7049>.
  
  [RFC7250]  Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
+
[[RFC7250]]  Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
              Weiler, S., and T. Kivinen, "Using Raw Public Keys in
+
          Weiler, S., and T. Kivinen, "Using Raw Public Keys in
              Transport Layer Security (TLS) and Datagram Transport
+
          Transport Layer Security (TLS) and Datagram Transport
              Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
+
          Layer Security (DTLS)", [[RFC7250|RFC 7250]], DOI 10.17487/RFC7250,
              June 2014, <https://www.rfc-editor.org/info/rfc7250>.
+
          June 2014, <https://www.rfc-editor.org/info/rfc7250>.
  
  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
+
[[RFC7252]]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
+
          Application Protocol (CoAP)", [[RFC7252|RFC 7252]],
              DOI 10.17487/RFC7252, June 2014,
+
          DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.
+
          <https://www.rfc-editor.org/info/rfc7252>.
  
  [RFC7525]  Sheffer, Y., Holz, R., and P. Saint-Andre,
+
[[RFC7525]]  Sheffer, Y., Holz, R., and P. Saint-Andre,
              "Recommendations for Secure Use of Transport Layer
+
          "Recommendations for Secure Use of Transport Layer
              Security (TLS) and Datagram Transport Layer Security
+
          Security (TLS) and Datagram Transport Layer Security
              (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
+
          (DTLS)", [[BCP195|BCP 195]], [[RFC7525|RFC 7525]], DOI 10.17487/RFC7525, May
              2015, <https://www.rfc-editor.org/info/rfc7525>.
+
          2015, <https://www.rfc-editor.org/info/rfc7525>.
  
  [RFC7641]  Hartke, K., "Observing Resources in the Constrained
+
[[RFC7641]]  Hartke, K., "Observing Resources in the Constrained
              Application Protocol (CoAP)", RFC 7641,
+
          Application Protocol (CoAP)", [[RFC7641|RFC 7641]],
              DOI 10.17487/RFC7641, September 2015,
+
          DOI 10.17487/RFC7641, September 2015,
              <https://www.rfc-editor.org/info/rfc7641>.
+
          <https://www.rfc-editor.org/info/rfc7641>.
  
  [RFC7918]  Langley, A., Modadugu, N., and B. Moeller, "Transport
+
[[RFC7918]]  Langley, A., Modadugu, N., and B. Moeller, "Transport
              Layer Security (TLS) False Start", RFC 7918,
+
          Layer Security (TLS) False Start", [[RFC7918|RFC 7918]],
              DOI 10.17487/RFC7918, August 2016,
+
          DOI 10.17487/RFC7918, August 2016,
              <https://www.rfc-editor.org/info/rfc7918>.
+
          <https://www.rfc-editor.org/info/rfc7918>.
  
  [RFC7924]  Santesson, S. and H. Tschofenig, "Transport Layer Security
+
[[RFC7924]]  Santesson, S. and H. Tschofenig, "Transport Layer Security
              (TLS) Cached Information Extension", RFC 7924,
+
          (TLS) Cached Information Extension", [[RFC7924|RFC 7924]],
              DOI 10.17487/RFC7924, July 2016,
+
          DOI 10.17487/RFC7924, July 2016,
              <https://www.rfc-editor.org/info/rfc7924>.
+
          <https://www.rfc-editor.org/info/rfc7924>.
  
  [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
+
[[RFC7950]]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
+
          [[RFC7950|RFC 7950]], DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.
+
          <https://www.rfc-editor.org/info/rfc7950>.
  
  [RFC7959]  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
+
[[RFC7959]]  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
              the Constrained Application Protocol (CoAP)", RFC 7959,
+
          the Constrained Application Protocol (CoAP)", [[RFC7959|RFC 7959]],
              DOI 10.17487/RFC7959, August 2016,
+
          DOI 10.17487/RFC7959, August 2016,
              <https://www.rfc-editor.org/info/rfc7959>.
+
          <https://www.rfc-editor.org/info/rfc7959>.
  
  [RFC8085]  Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
+
[[RFC8085]]  Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
              Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
+
          Guidelines", [[BCP145|BCP 145]], [[RFC8085|RFC 8085]], DOI 10.17487/RFC8085,
              March 2017, <https://www.rfc-editor.org/info/rfc8085>.
+
          March 2017, <https://www.rfc-editor.org/info/rfc8085>.
  
  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
+
[[RFC8126]]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
+
          Writing an IANA Considerations Section in RFCs", [[BCP26|BCP 26]],
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
+
          [[RFC8126|RFC 8126]], DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.
+
          <https://www.rfc-editor.org/info/rfc8126>.
  
  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
+
[[RFC8174]]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
+
          2119 Key Words", [[BCP14|BCP 14]], [[RFC8174|RFC 8174]], DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.
+
          May 2017, <https://www.rfc-editor.org/info/rfc8174>.
  
  [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
+
[[RFC8200]]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", STD 86, RFC 8200,
+
          (IPv6) Specification", [[STD86|STD 86]], [[RFC8200|RFC 8200]],
              DOI 10.17487/RFC8200, July 2017,
+
          DOI 10.17487/RFC8200, July 2017,
              <https://www.rfc-editor.org/info/rfc8200>.
+
          <https://www.rfc-editor.org/info/rfc8200>.
  
  [RFC8305]  Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
+
[[RFC8305]]  Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
              Better Connectivity Using Concurrency", RFC 8305,
+
          Better Connectivity Using Concurrency", [[RFC8305|RFC 8305]],
              DOI 10.17487/RFC8305, December 2017,
+
          DOI 10.17487/RFC8305, December 2017,
              <https://www.rfc-editor.org/info/rfc8305>.
+
          <https://www.rfc-editor.org/info/rfc8305>.
  
  [RFC8323]  Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
+
[[RFC8323]]  Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
              Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
+
          Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
              Application Protocol) over TCP, TLS, and WebSockets",
+
          Application Protocol) over TCP, TLS, and WebSockets",
              RFC 8323, DOI 10.17487/RFC8323, February 2018,
+
          [[RFC8323|RFC 8323]], DOI 10.17487/RFC8323, February 2018,
              <https://www.rfc-editor.org/info/rfc8323>.
+
          <https://www.rfc-editor.org/info/rfc8323>.
  
  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
+
[[RFC8446]]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
+
          Version 1.3", [[RFC8446|RFC 8446]], DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.
+
          <https://www.rfc-editor.org/info/rfc8446>.
  
  [RFC8615]  Nottingham, M., "Well-Known Uniform Resource Identifiers
+
[[RFC8615]]  Nottingham, M., "Well-Known Uniform Resource Identifiers
              (URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,
+
          (URIs)", [[RFC8615|RFC 8615]], DOI 10.17487/RFC8615, May 2019,
              <https://www.rfc-editor.org/info/rfc8615>.
+
          <https://www.rfc-editor.org/info/rfc8615>.
  
  [RFC8768]  Boucadair, M., Reddy.K, T., and J. Shallow, "Constrained
+
[[RFC8768]]  Boucadair, M., Reddy.K, T., and J. Shallow, "Constrained
              Application Protocol (CoAP) Hop-Limit Option", RFC 8768,
+
          Application Protocol (CoAP) Hop-Limit Option", [[RFC8768|RFC 8768]],
              DOI 10.17487/RFC8768, March 2020,
+
          DOI 10.17487/RFC8768, March 2020,
              <https://www.rfc-editor.org/info/rfc8768>.
+
          <https://www.rfc-editor.org/info/rfc8768>.
  
 
11.2.  Informative References
 
11.2.  Informative References
  
  [COMI]    Veillette, M., Stok, P., Pelov, A., Bierman, A., and I.
+
[COMI]    Veillette, M., Stok, P., Pelov, A., Bierman, A., and I.
              Petrov, "CoAP Management Interface", Work in Progress,
+
          Petrov, "CoAP Management Interface", Work in Progress,
              Internet-Draft, draft-ietf-core-comi-09, 9 March 2020,
+
          Internet-Draft, draft-ietf-core-comi-09, 9 March 2020,
              <https://tools.ietf.org/html/draft-ietf-core-comi-09>.
+
          <https://tools.ietf.org/html/draft-ietf-core-comi-09>.
  
  [CORE-YANG-CBOR]
+
[CORE-YANG-CBOR]
              Veillette, M., Petrov, I., and A. Pelov, "CBOR Encoding of
+
          Veillette, M., Petrov, I., and A. Pelov, "CBOR Encoding of
              Data Modeled with YANG", Work in Progress, Internet-Draft,
+
          Data Modeled with YANG", Work in Progress, Internet-Draft,
              draft-ietf-core-yang-cbor-12, 9 March 2020,
+
          draft-ietf-core-yang-cbor-12, 9 March 2020,
              <https://tools.ietf.org/html/draft-ietf-core-yang-cbor-
+
          <https://tools.ietf.org/html/draft-ietf-core-yang-cbor-
              12>.
+
          12>.
  
  [DOTS-ARCH]
+
[DOTS-ARCH]
              Mortensen, A., Reddy.K, T., Andreasen, F., Teague, N., and
+
          Mortensen, A., Reddy.K, T., Andreasen, F., Teague, N., and
              R. Compton, "Distributed-Denial-of-Service Open Threat
+
          R. Compton, "Distributed-Denial-of-Service Open Threat
              Signaling (DOTS) Architecture", Work in Progress,
+
          Signaling (DOTS) Architecture", Work in Progress,
              Internet-Draft, draft-ietf-dots-architecture-18, 6 March
+
          Internet-Draft, draft-ietf-dots-architecture-18, 6 March
              2020, <https://tools.ietf.org/html/draft-ietf-dots-
+
          2020, <https://tools.ietf.org/html/draft-ietf-dots-
              architecture-18>.
+
          architecture-18>.
  
  [DOTS-EARLYDATA]
+
[DOTS-EARLYDATA]
              Boucadair, M. and T. Reddy.K, "Using Early Data in DOTS",
+
          Boucadair, M. and T. Reddy.K, "Using Early Data in DOTS",
              Work in Progress, Internet-Draft, draft-boucadair-dots-
+
          Work in Progress, Internet-Draft, draft-boucadair-dots-
              earlydata-00, 29 January 2019,
+
          earlydata-00, 29 January 2019,
              <https://tools.ietf.org/html/draft-boucadair-dots-
+
          <https://tools.ietf.org/html/draft-boucadair-dots-
              earlydata-00>.
+
          earlydata-00>.
  
  [DOTS-MH]  Boucadair, M., Reddy.K, T., and W. Pan, "Multi-homing
+
[DOTS-MH]  Boucadair, M., Reddy.K, T., and W. Pan, "Multi-homing
              Deployment Considerations for Distributed-Denial-of-
+
          Deployment Considerations for Distributed-Denial-of-
              Service Open Threat Signaling (DOTS)", Work in Progress,
+
          Service Open Threat Signaling (DOTS)", Work in Progress,
              Internet-Draft, draft-ietf-dots-multihoming-03, 22 January
+
          Internet-Draft, draft-ietf-dots-multihoming-03, 22 January
              2020, <https://tools.ietf.org/html/draft-ietf-dots-
+
          2020, <https://tools.ietf.org/html/draft-ietf-dots-
              multihoming-03>.
+
          multihoming-03>.
  
  [DOTS-SERVER-DISC]
+
[DOTS-SERVER-DISC]
              Boucadair, M. and T. Reddy.K, "Distributed-Denial-of-
+
          Boucadair, M. and T. Reddy.K, "Distributed-Denial-of-
              Service Open Threat Signaling (DOTS) Agent Discovery",
+
          Service Open Threat Signaling (DOTS) Agent Discovery",
              Work in Progress, Internet-Draft, draft-ietf-dots-server-
+
          Work in Progress, Internet-Draft, draft-ietf-dots-server-
              discovery-10, 7 February 2020,
+
          discovery-10, 7 February 2020,
              <https://tools.ietf.org/html/draft-ietf-dots-server-
+
          <https://tools.ietf.org/html/draft-ietf-dots-server-
              discovery-10>.
+
          discovery-10>.
  
  [DOTS-USE-CASES]
+
[DOTS-USE-CASES]
              Dobbins, R., Migault, D., Moskowitz, R., Teague, N., Xia,
+
          Dobbins, R., Migault, D., Moskowitz, R., Teague, N., Xia,
              L., and K. Nishizuka, "Use cases for DDoS Open Threat
+
          L., and K. Nishizuka, "Use cases for DDoS Open Threat
              Signaling", Work in Progress, Internet-Draft, draft-ietf-
+
          Signaling", Work in Progress, Internet-Draft, draft-ietf-
              dots-use-cases-21, 15 May 2020,
+
          dots-use-cases-21, 15 May 2020,
              <https://tools.ietf.org/html/draft-ietf-dots-use-cases-
+
          <https://tools.ietf.org/html/draft-ietf-dots-use-cases-
              21>.
+
          21>.
  
  [DTLS]    Rescorla, E., Tschofenig, H., and N. Modadugu, "The
+
[DTLS]    Rescorla, E., Tschofenig, H., and N. Modadugu, "The
              Datagram Transport Layer Security (DTLS) Protocol Version
+
          Datagram Transport Layer Security (DTLS) Protocol Version
              1.3", Work in Progress, Internet-Draft, draft-ietf-tls-
+
          1.3", Work in Progress, Internet-Draft, draft-ietf-tls-
              dtls13-37, 9 March 2020,
+
          dtls13-37, 9 March 2020,
              <https://tools.ietf.org/html/draft-ietf-tls-dtls13-37>.
+
          <https://tools.ietf.org/html/draft-ietf-tls-dtls13-37>.
  
  [IANA-CBOR-Tags]
+
[IANA-CBOR-Tags]
              IANA, "Concise Binary Object Representation (CBOR) Tags",
+
          IANA, "Concise Binary Object Representation (CBOR) Tags",
              <http://www.iana.org/assignments/cbor-tags/cbor-
+
          <http://www.iana.org/assignments/cbor-tags/cbor-
              tags.xhtml>.
+
          tags.xhtml>.
  
  [IANA-CoAP-Content-Formats]
+
[IANA-CoAP-Content-Formats]
              IANA, "CoAP Content-Formats",
+
          IANA, "CoAP Content-Formats",
              <http://www.iana.org/assignments/core-parameters/core-
+
          <http://www.iana.org/assignments/core-parameters/core-
              parameters.xhtml#content-formats>.
+
          parameters.xhtml#content-formats>.
  
  [IANA-MediaTypes]
+
[IANA-MediaTypes]
              IANA, "Media Types",
+
          IANA, "Media Types",
              <http://www.iana.org/assignments/media-types>.
+
          <http://www.iana.org/assignments/media-types>.
  
  [IANA-Proto]
+
[IANA-Proto]
              IANA, "Protocol Numbers", 2011,
+
          IANA, "Protocol Numbers", 2011,
              <http://www.iana.org/assignments/protocol-numbers>.
+
          <http://www.iana.org/assignments/protocol-numbers>.
  
  [RFC3022]  Srisuresh, P. and K. Egevang, "Traditional IP Network
+
[[RFC3022]]  Srisuresh, P. and K. Egevang, "Traditional IP Network
              Address Translator (Traditional NAT)", RFC 3022,
+
          Address Translator (Traditional NAT)", [[RFC3022|RFC 3022]],
              DOI 10.17487/RFC3022, January 2001,
+
          DOI 10.17487/RFC3022, January 2001,
              <https://www.rfc-editor.org/info/rfc3022>.
+
          <https://www.rfc-editor.org/info/rfc3022>.
  
  [RFC4034]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
+
[[RFC4034]]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "Resource Records for the DNS Security Extensions",
+
          Rose, "Resource Records for the DNS Security Extensions",
              RFC 4034, DOI 10.17487/RFC4034, March 2005,
+
          [[RFC4034|RFC 4034]], DOI 10.17487/RFC4034, March 2005,
              <https://www.rfc-editor.org/info/rfc4034>.
+
          <https://www.rfc-editor.org/info/rfc4034>.
  
  [RFC4122]  Leach, P., Mealling, M., and R. Salz, "A Universally
+
[[RFC4122]]  Leach, P., Mealling, M., and R. Salz, "A Universally
              Unique IDentifier (UUID) URN Namespace", RFC 4122,
+
          Unique IDentifier (UUID) URN Namespace", [[RFC4122|RFC 4122]],
              DOI 10.17487/RFC4122, July 2005,
+
          DOI 10.17487/RFC4122, July 2005,
              <https://www.rfc-editor.org/info/rfc4122>.
+
          <https://www.rfc-editor.org/info/rfc4122>.
  
  [RFC4340]  Kohler, E., Handley, M., and S. Floyd, "Datagram
+
[[RFC4340]]  Kohler, E., Handley, M., and S. Floyd, "Datagram
              Congestion Control Protocol (DCCP)", RFC 4340,
+
          Congestion Control Protocol (DCCP)", [[RFC4340|RFC 4340]],
              DOI 10.17487/RFC4340, March 2006,
+
          DOI 10.17487/RFC4340, March 2006,
              <https://www.rfc-editor.org/info/rfc4340>.
+
          <https://www.rfc-editor.org/info/rfc4340>.
  
  [RFC4732]  Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
+
[[RFC4732]]  Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
              Denial-of-Service Considerations", RFC 4732,
+
          Denial-of-Service Considerations", [[RFC4732|RFC 4732]],
              DOI 10.17487/RFC4732, December 2006,
+
          DOI 10.17487/RFC4732, December 2006,
              <https://www.rfc-editor.org/info/rfc4732>.
+
          <https://www.rfc-editor.org/info/rfc4732>.
  
  [RFC4787]  Audet, F., Ed. and C. Jennings, "Network Address
+
[[RFC4787]]  Audet, F., Ed. and C. Jennings, "Network Address
              Translation (NAT) Behavioral Requirements for Unicast
+
          Translation (NAT) Behavioral Requirements for Unicast
              UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
+
          UDP", [[BCP127|BCP 127]], [[RFC4787|RFC 4787]], DOI 10.17487/RFC4787, January
              2007, <https://www.rfc-editor.org/info/rfc4787>.
+
          2007, <https://www.rfc-editor.org/info/rfc4787>.
  
  [RFC4960]  Stewart, R., Ed., "Stream Control Transmission Protocol",
+
[[RFC4960]]  Stewart, R., Ed., "Stream Control Transmission Protocol",
              RFC 4960, DOI 10.17487/RFC4960, September 2007,
+
          [[RFC4960|RFC 4960]], DOI 10.17487/RFC4960, September 2007,
              <https://www.rfc-editor.org/info/rfc4960>.
+
          <https://www.rfc-editor.org/info/rfc4960>.
  
  [RFC4987]  Eddy, W., "TCP SYN Flooding Attacks and Common
+
[[RFC4987]]  Eddy, W., "TCP SYN Flooding Attacks and Common
              Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
+
          Mitigations", [[RFC4987|RFC 4987]], DOI 10.17487/RFC4987, August 2007,
              <https://www.rfc-editor.org/info/rfc4987>.
+
          <https://www.rfc-editor.org/info/rfc4987>.
  
  [RFC5925]  Touch, J., Mankin, A., and R. Bonica, "The TCP
+
[[RFC5925]]  Touch, J., Mankin, A., and R. Bonica, "The TCP
              Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
+
          Authentication Option", [[RFC5925|RFC 5925]], DOI 10.17487/RFC5925,
              June 2010, <https://www.rfc-editor.org/info/rfc5925>.
+
          June 2010, <https://www.rfc-editor.org/info/rfc5925>.
  
  [RFC6052]  Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
+
[[RFC6052]]  Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
              Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052,
+
          Li, "IPv6 Addressing of IPv4/IPv6 Translators", [[RFC6052|RFC 6052]],
              DOI 10.17487/RFC6052, October 2010,
+
          DOI 10.17487/RFC6052, October 2010,
              <https://www.rfc-editor.org/info/rfc6052>.
+
          <https://www.rfc-editor.org/info/rfc6052>.
  
  [RFC6146]  Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
+
[[RFC6146]]  Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
              NAT64: Network Address and Protocol Translation from IPv6
+
          NAT64: Network Address and Protocol Translation from IPv6
              Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
+
          Clients to IPv4 Servers", [[RFC6146|RFC 6146]], DOI 10.17487/RFC6146,
              April 2011, <https://www.rfc-editor.org/info/rfc6146>.
+
          April 2011, <https://www.rfc-editor.org/info/rfc6146>.
  
  [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
+
[[RFC6234]]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and SHA-based HMAC and HKDF)", RFC 6234,
+
          (SHA and SHA-based HMAC and HKDF)", [[RFC6234|RFC 6234]],
              DOI 10.17487/RFC6234, May 2011,
+
          DOI 10.17487/RFC6234, May 2011,
              <https://www.rfc-editor.org/info/rfc6234>.
+
          <https://www.rfc-editor.org/info/rfc6234>.
  
  [RFC6296]  Wasserman, M. and F. Baker, "IPv6-to-IPv6 Network Prefix
+
[[RFC6296]]  Wasserman, M. and F. Baker, "IPv6-to-IPv6 Network Prefix
              Translation", RFC 6296, DOI 10.17487/RFC6296, June 2011,
+
          Translation", [[RFC6296|RFC 6296]], DOI 10.17487/RFC6296, June 2011,
              <https://www.rfc-editor.org/info/rfc6296>.
+
          <https://www.rfc-editor.org/info/rfc6296>.
  
  [RFC6724]  Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
+
[[RFC6724]]  Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
              "Default Address Selection for Internet Protocol Version 6
+
          "Default Address Selection for Internet Protocol Version 6
              (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
+
          (IPv6)", [[RFC6724|RFC 6724]], DOI 10.17487/RFC6724, September 2012,
              <https://www.rfc-editor.org/info/rfc6724>.
+
          <https://www.rfc-editor.org/info/rfc6724>.
  
  [RFC6838]  Freed, N., Klensin, J., and T. Hansen, "Media Type
+
[[RFC6838]]  Freed, N., Klensin, J., and T. Hansen, "Media Type
              Specifications and Registration Procedures", BCP 13,
+
          Specifications and Registration Procedures", [[BCP13|BCP 13]],
              RFC 6838, DOI 10.17487/RFC6838, January 2013,
+
          [[RFC6838|RFC 6838]], DOI 10.17487/RFC6838, January 2013,
              <https://www.rfc-editor.org/info/rfc6838>.
+
          <https://www.rfc-editor.org/info/rfc6838>.
  
  [RFC6887]  Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
+
[[RFC6887]]  Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
              P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
+
          P. Selkirk, "Port Control Protocol (PCP)", [[RFC6887|RFC 6887]],
              DOI 10.17487/RFC6887, April 2013,
+
          DOI 10.17487/RFC6887, April 2013,
              <https://www.rfc-editor.org/info/rfc6887>.
+
          <https://www.rfc-editor.org/info/rfc6887>.
  
  [RFC6888]  Perreault, S., Ed., Yamagata, I., Miyakawa, S., Nakagawa,
+
[[RFC6888]]  Perreault, S., Ed., Yamagata, I., Miyakawa, S., Nakagawa,
              A., and H. Ashida, "Common Requirements for Carrier-Grade
+
          A., and H. Ashida, "Common Requirements for Carrier-Grade
              NATs (CGNs)", BCP 127, RFC 6888, DOI 10.17487/RFC6888,
+
          NATs (CGNs)", [[BCP127|BCP 127]], [[RFC6888|RFC 6888]], DOI 10.17487/RFC6888,
              April 2013, <https://www.rfc-editor.org/info/rfc6888>.
+
          April 2013, <https://www.rfc-editor.org/info/rfc6888>.
  
  [RFC7030]  Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
+
[[RFC7030]]  Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
              "Enrollment over Secure Transport", RFC 7030,
+
          "Enrollment over Secure Transport", [[RFC7030|RFC 7030]],
              DOI 10.17487/RFC7030, October 2013,
+
          DOI 10.17487/RFC7030, October 2013,
              <https://www.rfc-editor.org/info/rfc7030>.
+
          <https://www.rfc-editor.org/info/rfc7030>.
  
  [RFC7413]  Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
+
[[RFC7413]]  Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
              Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
+
          Fast Open", [[RFC7413|RFC 7413]], DOI 10.17487/RFC7413, December 2014,
              <https://www.rfc-editor.org/info/rfc7413>.
+
          <https://www.rfc-editor.org/info/rfc7413>.
  
  [RFC7452]  Tschofenig, H., Arkko, J., Thaler, D., and D. McPherson,
+
[[RFC7452]]  Tschofenig, H., Arkko, J., Thaler, D., and D. McPherson,
              "Architectural Considerations in Smart Object Networking",
+
          "Architectural Considerations in Smart Object Networking",
              RFC 7452, DOI 10.17487/RFC7452, March 2015,
+
          [[RFC7452|RFC 7452]], DOI 10.17487/RFC7452, March 2015,
              <https://www.rfc-editor.org/info/rfc7452>.
+
          <https://www.rfc-editor.org/info/rfc7452>.
  
  [RFC7589]  Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
+
[[RFC7589]]  Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
              NETCONF Protocol over Transport Layer Security (TLS) with
+
          NETCONF Protocol over Transport Layer Security (TLS) with
              Mutual X.509 Authentication", RFC 7589,
+
          Mutual X.509 Authentication", [[RFC7589|RFC 7589]],
              DOI 10.17487/RFC7589, June 2015,
+
          DOI 10.17487/RFC7589, June 2015,
              <https://www.rfc-editor.org/info/rfc7589>.
+
          <https://www.rfc-editor.org/info/rfc7589>.
  
  [RFC7858]  Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
+
[[RFC7858]]  Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
              and P. Hoffman, "Specification for DNS over Transport
+
          and P. Hoffman, "Specification for DNS over Transport
              Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
+
          Layer Security (TLS)", [[RFC7858|RFC 7858]], DOI 10.17487/RFC7858, May
              2016, <https://www.rfc-editor.org/info/rfc7858>.
+
          2016, <https://www.rfc-editor.org/info/rfc7858>.
  
  [RFC7951]  Lhotka, L., "JSON Encoding of Data Modeled with YANG",
+
[[RFC7951]]  Lhotka, L., "JSON Encoding of Data Modeled with YANG",
              RFC 7951, DOI 10.17487/RFC7951, August 2016,
+
          [[RFC7951|RFC 7951]], DOI 10.17487/RFC7951, August 2016,
              <https://www.rfc-editor.org/info/rfc7951>.
+
          <https://www.rfc-editor.org/info/rfc7951>.
  
  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
+
[[RFC8340]]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
+
          [[BCP215|BCP 215]], [[RFC8340|RFC 8340]], DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.
+
          <https://www.rfc-editor.org/info/rfc8340>.
  
  [RFC8484]  Hoffman, P. and P. McManus, "DNS Queries over HTTPS
+
[[RFC8484]]  Hoffman, P. and P. McManus, "DNS Queries over HTTPS
              (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
+
          (DoH)", [[RFC8484|RFC 8484]], DOI 10.17487/RFC8484, October 2018,
              <https://www.rfc-editor.org/info/rfc8484>.
+
          <https://www.rfc-editor.org/info/rfc8484>.
  
  [RFC8489]  Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing,
+
[[RFC8489]]  Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing,
              D., Mahy, R., and P. Matthews, "Session Traversal
+
          D., Mahy, R., and P. Matthews, "Session Traversal
              Utilities for NAT (STUN)", RFC 8489, DOI 10.17487/RFC8489,
+
          Utilities for NAT (STUN)", [[RFC8489|RFC 8489]], DOI 10.17487/RFC8489,
              February 2020, <https://www.rfc-editor.org/info/rfc8489>.
+
          February 2020, <https://www.rfc-editor.org/info/rfc8489>.
  
  [RFC8499]  Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
+
[[RFC8499]]  Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
              Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
+
          Terminology", [[BCP219|BCP 219]], [[RFC8499|RFC 8499]], DOI 10.17487/RFC8499,
              January 2019, <https://www.rfc-editor.org/info/rfc8499>.
+
          January 2019, <https://www.rfc-editor.org/info/rfc8499>.
  
  [RFC8612]  Mortensen, A., Reddy, T., and R. Moskowitz, "DDoS Open
+
[[RFC8612]]  Mortensen, A., Reddy, T., and R. Moskowitz, "DDoS Open
              Threat Signaling (DOTS) Requirements", RFC 8612,
+
          Threat Signaling (DOTS) Requirements", [[RFC8612|RFC 8612]],
              DOI 10.17487/RFC8612, May 2019,
+
          DOI 10.17487/RFC8612, May 2019,
              <https://www.rfc-editor.org/info/rfc8612>.
+
          <https://www.rfc-editor.org/info/rfc8612>.
  
  [RFC8783]  Boucadair, M., Ed. and T. Reddy.K, Ed., "Distributed
+
[[RFC8783]]  Boucadair, M., Ed. and T. Reddy.K, Ed., "Distributed
              Denial-of-Service Open Threat Signaling (DOTS) Data
+
          Denial-of-Service Open Threat Signaling (DOTS) Data
              Channel Specification", RFC 8783, DOI 10.17487/RFC8783,
+
          Channel Specification", [[RFC8783|RFC 8783]], DOI 10.17487/RFC8783,
              May 2020, <https://www.rfc-editor.org/info/rfc8783>.
+
          May 2020, <https://www.rfc-editor.org/info/rfc8783>.
  
 
Appendix A.  CUID Generation
 
Appendix A.  CUID Generation
  
  The document recommends the use of SPKI to generate the 'cuid'.  This
+
The document recommends the use of SPKI to generate the 'cuid'.  This
  design choice is motivated by the following reasons:
+
design choice is motivated by the following reasons:
  
  *  SPKI is globally unique.
+
*  SPKI is globally unique.
  
  *  It is deterministic.
+
*  It is deterministic.
  
  *  It allows the avoidance of extra cycles that may be induced by
+
*  It allows the avoidance of extra cycles that may be induced by
      'cuid' collision.
+
  'cuid' collision.
  
  *  DOTS clients do not need to store the 'cuid' in a persistent
+
*  DOTS clients do not need to store the 'cuid' in a persistent
      storage.
+
  storage.
  
  *  It allows the detection of compromised DOTS clients that do not
+
*  It allows the detection of compromised DOTS clients that do not
      adhere to the 'cuid' generation algorithm.
+
  adhere to the 'cuid' generation algorithm.
  
 
Acknowledgements
 
Acknowledgements
  
  Thanks to Christian Jacquenet, Roland Dobbins, Roman Danyliw, Michael
+
Thanks to Christian Jacquenet, Roland Dobbins, Roman Danyliw, Michael
  Richardson, Ehud Doron, Kaname Nishizuka, Dave Dolson, Liang Xia,
+
Richardson, Ehud Doron, Kaname Nishizuka, Dave Dolson, Liang Xia,
  Gilbert Clark, Xialiang Frank, Jim Schaad, Klaus Hartke, Nesredien
+
Gilbert Clark, Xialiang Frank, Jim Schaad, Klaus Hartke, Nesredien
  Suleiman, Stephen Farrell, and Yoshifumi Nishida for the discussion
+
Suleiman, Stephen Farrell, and Yoshifumi Nishida for the discussion
  and comments.
+
and comments.
  
  The authors would like to give special thanks to Kaname Nishizuka and
+
The authors would like to give special thanks to Kaname Nishizuka and
  Jon Shallow for their efforts in implementing the protocol and
+
Jon Shallow for their efforts in implementing the protocol and
  performing interop testing at IETF Hackathons.
+
performing interop testing at IETF Hackathons.
  
  Thanks to the core WG for the recommendations on Hop-Limit and
+
Thanks to the core WG for the recommendations on Hop-Limit and
  redirect signaling.
+
redirect signaling.
  
  Special thanks to Benjamin Kaduk for the detailed AD review.
+
Special thanks to Benjamin Kaduk for the detailed AD review.
  
  Thanks to Alexey Melnikov, Adam Roach, Suresh Krishnan, Mirja
+
Thanks to Alexey Melnikov, Adam Roach, Suresh Krishnan, Mirja
  Kühlewind, and Alissa Cooper for the review.
+
Kühlewind, and Alissa Cooper for the review.
  
  Thanks to Carsten Bormann for his review of the DOTS heartbeat
+
Thanks to Carsten Bormann for his review of the DOTS heartbeat
  mechanism.
+
mechanism.
  
 
Contributors
 
Contributors
  
  The following individuals have contributed to this document:
+
The following individuals have contributed to this document:
 
 
  Jon Shallow
 
  NCC Group
 
 
 
 
 
 
 
 
  Mike Geller
 
  Cisco Systems, Inc.
 
  FL 33309
 
  United States of America
 
  
+
Jon Shallow
 +
NCC Group
  
 +
  
  Robert Moskowitz
+
Mike Geller
  HTT Consulting
+
Cisco Systems, Inc.
  Oak Park, MI 42837
+
FL 33309
  United States of America
+
United States of America
  
  Email: rgm@htt-consult.com
+
Email: mgeller@cisco.com
  
 +
Robert Moskowitz
 +
HTT Consulting
 +
Oak Park, MI 42837
 +
United States of America
  
  Dan Wing
+
  
+
Dan Wing
  
 +
  
 
Authors' Addresses
 
Authors' Addresses
  
  Tirumaleswar Reddy.K (editor)
+
Tirumaleswar Reddy.K (editor)
  McAfee, Inc.
+
McAfee, Inc.
  Embassy Golf Link Business Park
+
Embassy Golf Link Business Park
  Bangalore 560071
+
Bangalore 560071
  Karnataka
+
Karnataka
  India
+
India
 
 
 
 
 
 
 
  Mohamed Boucadair (editor)
 
  Orange
 
  35000 Rennes
 
  France
 
  
  Email: mohamed.boucadair@orange.com
+
Email: kondtir@gmail.com
  
 +
Mohamed Boucadair (editor)
 +
Orange
 +
35000 Rennes
 +
France
  
  Prashanth Patil
+
Email: mohamed.[email protected]
  Cisco Systems, Inc.
 
  
  Email: praspati@cisco.com
+
Prashanth Patil
 +
Cisco Systems, Inc.
  
 +
  
  Andrew Mortensen
+
Andrew Mortensen
  Arbor Networks, Inc.
+
Arbor Networks, Inc.
  2727 S. State Street
+
2727 S. State Street
  Ann Arbor, MI 48104
+
Ann Arbor, MI 48104
  United States of America
+
United States of America
  
+
  
 +
Nik Teague
 +
Iron Mountain Data Centers
 +
United Kingdom
  
  Nik Teague
+
  Iron Mountain Data Centers
 
  United Kingdom
 
  
+
[[Category:Standards Track]]

Latest revision as of 11:17, 30 October 2020



Internet Engineering Task Force (IETF) T. Reddy.K, Ed. Request for Comments: 8782 McAfee Category: Standards Track M. Boucadair, Ed. ISSN: 2070-1721 Orange

                                                            P. Patil
                                                               Cisco
                                                        A. Mortensen
                                                Arbor Networks, Inc.
                                                           N. Teague
                                          Iron Mountain Data Centers
                                                            May 2020

Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal

                     Channel Specification

Abstract

This document specifies the Distributed Denial-of-Service Open Threat Signaling (DOTS) signal channel, a protocol for signaling the need for protection against Distributed Denial-of-Service (DDoS) attacks to a server capable of enabling network traffic mitigation on behalf of the requesting client.

A companion document defines the DOTS data channel, a separate reliable communication layer for DOTS management and configuration purposes.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8782.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

1. Introduction 2. Terminology 3. Design Overview 4. DOTS Signal Channel: Messages & Behaviors

 4.1.  DOTS Server(s) Discovery
 4.2.  CoAP URIs
 4.3.  Happy Eyeballs for DOTS Signal Channel
 4.4.  DOTS Mitigation Methods
   4.4.1.  Request Mitigation
   4.4.2.  Retrieve Information Related to a Mitigation
     4.4.2.1.  DOTS Servers Sending Mitigation Status
     4.4.2.2.  DOTS Clients Polling for Mitigation Status
   4.4.3.  Efficacy Update from DOTS Clients
   4.4.4.  Withdraw a Mitigation
 4.5.  DOTS Signal Channel Session Configuration
   4.5.1.  Discover Configuration Parameters
   4.5.2.  Convey DOTS Signal Channel Session Configuration
   4.5.3.  Configuration Freshness and Notifications
   4.5.4.  Delete DOTS Signal Channel Session Configuration
 4.6.  Redirected Signaling
 4.7.  Heartbeat Mechanism

5. DOTS Signal Channel YANG Modules

 5.1.  Tree Structure
 5.2.  IANA DOTS Signal Channel YANG Module
 5.3.  IETF DOTS Signal Channel YANG Module

6. YANG/JSON Mapping Parameters to CBOR 7. (D)TLS Protocol Profile and Performance Considerations

 7.1.  (D)TLS Protocol Profile
 7.2.  (D)TLS 1.3 Considerations
 7.3.  DTLS MTU and Fragmentation

8. Mutual Authentication of DOTS Agents & Authorization of DOTS

       Clients

9. IANA Considerations

 9.1.  DOTS Signal Channel UDP and TCP Port Number
 9.2.  Well-Known 'dots' URI
 9.3.  Media Type Registration
 9.4.  CoAP Content-Formats Registration
 9.5.  CBOR Tag Registration
 9.6.  DOTS Signal Channel Protocol Registry
   9.6.1.  DOTS Signal Channel CBOR Key Values Subregistry
     9.6.1.1.  Registration Template
     9.6.1.2.  Initial Subregistry Content
   9.6.2.  Status Codes Subregistry
   9.6.3.  Conflict Status Codes Subregistry
   9.6.4.  Conflict Cause Codes Subregistry
   9.6.5.  Attack Status Codes Subregistry
 9.7.  DOTS Signal Channel YANG Modules

10. Security Considerations 11. References

 11.1.  Normative References
 11.2.  Informative References

Appendix A. CUID Generation Acknowledgements Contributors Authors' Addresses

Contents

Introduction

A Distributed Denial-of-Service (DDoS) attack is a distributed attempt to make machines or network resources unavailable to their intended users. In most cases, sufficient scale for an effective attack can be achieved by compromising enough end hosts and using those infected hosts to perpetrate and amplify the attack. The victim in this attack can be an application server, a host, a router, a firewall, or an entire network.

Network applications have finite resources like CPU cycles, the number of processes or threads they can create and use, the maximum number of simultaneous connections they can handle, the resources assigned to the control plane, etc. When processing network traffic, such applications are supposed to use these resources to provide the intended functionality in the most efficient manner. However, a DDoS attacker may be able to prevent an application from performing its intended task by making the application exhaust its finite resources.

A TCP DDoS SYN flood RFC4987, for example, is a memory-exhausting attack while an ACK flood is a CPU-exhausting attack. Attacks on the link are carried out by sending enough traffic so that the link becomes congested, thereby likely causing packet loss for legitimate traffic. Stateful firewalls can also be attacked by sending traffic that causes the firewall to maintain an excessive number of states that may jeopardize the firewall's operation overall, in addition to likely performance impacts. The firewall then runs out of memory, and it can no longer instantiate the states required to process legitimate flows. Other possible DDoS attacks are discussed in RFC4732.

In many cases, it may not be possible for network administrators to determine the cause(s) of an attack. They may instead just realize that certain resources seem to be under attack. This document defines a lightweight protocol that allows a DOTS client to request mitigation from one or more DOTS servers for protection against detected, suspected, or anticipated attacks. This protocol enables cooperation between DOTS agents to permit a highly automated network defense that is robust, reliable, and secure. Note that "secure" means the support of the features defined in Section 2.4 of RFC8612.

An example of a network diagram that illustrates a deployment of DOTS agents is shown in Figure 1. In this example, a DOTS server is operating on the access network. A DOTS client is located on the LAN (Local Area Network), while a DOTS gateway is embedded in the CPE (Customer Premises Equipment).

  Network
  Resource         CPE Router        Access Network     __________
+-----------+   +--------------+    +-------------+    /          \
|           |___|              |____|             |___ | Internet |
|DOTS Client|   | DOTS Gateway |    | DOTS Server |    |          |
|           |   |              |    |             |    |          |
+-----------+   +--------------+    +-------------+    \__________/
                Figure 1: Sample DOTS Deployment (1)

DOTS servers can also be reachable over the Internet, as depicted in Figure 2.

  Network                                           DDoS Mitigation
  Resource         CPE Router        __________         Service
+-----------+   +--------------+    /          \    +-------------+
|           |___|              |____|          |___ |             |
|DOTS Client|   | DOTS Gateway |    | Internet |    | DOTS Server |
|           |   |              |    |          |    |             |
+-----------+   +--------------+    \__________/    +-------------+
                Figure 2: Sample DOTS Deployment (2)

In typical deployments, the DOTS client belongs to a different administrative domain than the DOTS server. For example, the DOTS client is embedded in a firewall protecting services owned and operated by a customer, while the DOTS server is owned and operated by a different administrative entity (service provider, typically) providing DDoS mitigation services. The latter might or might not provide connectivity services to the network hosting the DOTS client.

The DOTS server may (not) be co-located with the DOTS mitigator. In typical deployments, the DOTS server belongs to the same administrative domain as the mitigator. The DOTS client can communicate directly with a DOTS server or indirectly via a DOTS gateway.

This document adheres to the DOTS architecture [DOTS-ARCH]. The requirements for DOTS signal channel protocol are documented in RFC8612. This document satisfies all the use cases discussed in [DOTS-USE-CASES].

This document focuses on the DOTS signal channel. This is a companion document of the DOTS data channel specification RFC8783 that defines a configuration and a bulk data exchange mechanism supporting the DOTS signal channel.

Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 RFC2119RFC8174 when, and only when, they appear in all capitals, as shown here.

(D)TLS is used for statements that apply to both Transport Layer Security RFC5246 RFC8446 and Datagram Transport Layer Security RFC6347. Specific terms are used for any statement that applies to either protocol alone.

The reader should be familiar with the terms defined in RFC8612.

The meaning of the symbols in YANG tree diagrams is defined in RFC8340.

Design Overview

The DOTS signal channel is built on top of the Constrained Application Protocol (CoAP) RFC7252, a lightweight protocol originally designed for constrained devices and networks. The many features of CoAP (expectation of packet loss, support for asynchronous Non-confirmable messaging, congestion control, small message overhead limiting the need for fragmentation, use of minimal resources, and support for (D)TLS) make it a good candidate upon which to build the DOTS signaling mechanism.

DOTS clients and servers behave as CoAP endpoints. By default, a DOTS client (or server) behaves as a CoAP client (or server). Nevertheless, a DOTS client (or server) behaves as a CoAP server (or client) for specific operations such as DOTS heartbeat operations (Section 4.7).

The DOTS signal channel is layered on existing standards (see Figure 3).

                      +---------------------+
                      | DOTS Signal Channel |
                      +---------------------+
                      |         CoAP        |
                      +----------+----------+
                      |   TLS    |   DTLS   |
                      +----------+----------+
                      |   TCP    |   UDP    |
                      +----------+----------+
                      |          IP         |
                      +---------------------+
 Figure 3: Abstract Layering of DOTS Signal Channel over CoAP over
                               (D)TLS

In some cases, a DOTS client and server may have a mutual agreement to use a specific port number, such as by explicit configuration or dynamic discovery [DOTS-SERVER-DISC]. Absent such mutual agreement, the DOTS signal channel MUST run over port number 4646 as defined in Section 9.1, for both UDP and TCP. In order to use a distinct port number (as opposed to 4646), DOTS clients and servers SHOULD support a configurable parameter to supply the port number to use.

  |  Note: The rationale for not using the default port number 5684
  |  ((D)TLS CoAP) is to avoid the discovery of services and
  |  resources discussed in RFC7252 and allow for differentiated
  |  behaviors in environments where both a DOTS gateway and an
  |  Internet of Things (IoT) gateway (e.g., Figure 3 of RFC7452)
  |  are co-located.
  |  
  |  Particularly, the use of a default port number is meant to
  |  simplify DOTS deployment in scenarios where no explicit IP
  |  address configuration is required.  For example, the use of the
  |  default router as the DOTS server aims to ease DOTS deployment
  |  within LANs (in which CPEs embed a DOTS gateway as illustrated
  |  in Figures 1 and 2) without requiring a sophisticated discovery
  |  method and configuration tasks within the LAN.  It is also
  |  possible to use anycast addresses for DOTS servers to simplify
  |  DOTS client configuration, including service discovery.  In
  |  such an anycast-based scenario, a DOTS client initiating a DOTS
  |  session to the DOTS server anycast address may, for example, be
  |  (1) redirected to the DOTS server unicast address to be used by
  |  the DOTS client following the procedure discussed in
  |  Section 4.6 or (2) relayed to a unicast DOTS server.

The signal channel uses the "coaps" URI scheme defined in Section 6 of RFC7252 and the "coaps+tcp" URI scheme defined in Section 8.2 of RFC8323 to identify DOTS server resources that are accessible using CoAP over UDP secured with DTLS and CoAP over TCP secured with TLS, respectively.

The DOTS signal channel can be established between two DOTS agents prior to or during an attack. The DOTS signal channel is initiated by the DOTS client. The DOTS client can then negotiate, configure, and retrieve the DOTS signal channel session behavior with its DOTS peer (Section 4.5). Once the signal channel is established, the DOTS agents may periodically send heartbeats to keep the channel active (Section 4.7). At any time, the DOTS client may send a mitigation request message (Section 4.4) to a DOTS server over the active signal channel. While mitigation is active (because of the higher likelihood of packet loss during a DDoS attack), the DOTS server periodically sends status messages to the client, including basic mitigation feedback details. Mitigation remains active until the DOTS client explicitly terminates mitigation or the mitigation lifetime expires. Also, the DOTS server may rely on the signal channel session loss to trigger mitigation for preconfigured mitigation requests (if any).

DOTS signaling can happen with DTLS over UDP and TLS over TCP. Likewise, DOTS requests may be sent using IPv4 or IPv6 transfer capabilities. A Happy Eyeballs procedure for the DOTS signal channel is specified in Section 4.3.

A DOTS client is entitled to access only the resources it creates. In particular, a DOTS client cannot retrieve data related to mitigation requests created by other DOTS clients of the same DOTS client domain.

Messages exchanged between DOTS agents are serialized using Concise Binary Object Representation (CBOR) RFC7049, a binary encoding scheme designed for small code and message size. CBOR-encoded payloads are used to carry signal channel-specific payload messages that convey request parameters and response information such as errors. In order to allow the reusing of data models across protocols, RFC7951 specifies the JavaScript Object Notation (JSON) encoding of YANG-modeled data. A similar effort for CBOR is defined in [CORE-YANG-CBOR].

DOTS agents determine that a CBOR data structure is a DOTS signal channel object from the application context, such as from the port number assigned to the DOTS signal channel. The other method DOTS agents use to indicate that a CBOR data structure is a DOTS signal channel object is the use of the "application/dots+cbor" content type (Section 9.3).

This document specifies a YANG module for representing DOTS mitigation scopes, DOTS signal channel session configuration data, and DOTS redirected signaling (Section 5). All parameters in the payload of the DOTS signal channel are mapped to CBOR types as specified in Table 5 (Section 6).

In order to prevent fragmentation, DOTS agents must follow the recommendations documented in Section 4.6 of RFC7252. Refer to Section 7.3 for more details.

DOTS agents MUST support GET, PUT, and DELETE CoAP methods. The payload included in CoAP responses with 2.xx Response Codes MUST be of content type "application/dots+cbor". CoAP responses with 4.xx and 5.xx error Response Codes MUST include a diagnostic payload (Section 5.5.2 of RFC7252). The diagnostic payload may contain additional information to aid troubleshooting.

In deployments where multiple DOTS clients are enabled in a network (owned and operated by the same entity), the DOTS server may detect conflicting mitigation requests from these clients. This document does not aim to specify a comprehensive list of conditions under which a DOTS server will characterize two mitigation requests from distinct DOTS clients as conflicting, nor does it recommend a DOTS server behavior for processing conflicting mitigation requests. Those considerations are implementation and deployment specific. Nevertheless, this document specifies the mechanisms to notify DOTS clients when conflicts occur, including the conflict cause (Section 4.4).

In deployments where one or more translators (e.g., Traditional NAT RFC3022, CGN RFC6888, NAT64 RFC6146, NPTv6 RFC6296) are enabled between the client's network and the DOTS server, any DOTS signal channel messages forwarded to a DOTS server MUST NOT include internal IP addresses/prefixes and/or port numbers; instead, external addresses/prefixes and/or port numbers as assigned by the translator MUST be used. This document does not make any recommendations about possible translator discovery mechanisms. The following are some (non-exhaustive) deployment examples that may be considered:

  • Port Control Protocol (PCP) RFC6887 or Session Traversal
  Utilities for NAT (STUN) RFC8489 may be used to retrieve the
  external addresses/prefixes and/or port numbers.  Information
  retrieved by means of PCP or STUN will be used to feed the DOTS
  signal channel messages that will be sent to a DOTS server.
  • A DOTS gateway may be co-located with the translator. The DOTS
  gateway will need to update the DOTS messages based upon the local
  translator's binding table.

DOTS Signal Channel: Messages & Behaviors

DOTS Server(s) Discovery

This document assumes that DOTS clients are provisioned with the reachability information of their DOTS server(s) using any of a variety of means (e.g., local configuration or dynamic means such as DHCP [DOTS-SERVER-DISC]). The description of such means is out of scope of this document.

Likewise, it is out of the scope of this document to specify the behavior to be followed by a DOTS client in order to send DOTS requests when multiple DOTS servers are provisioned (e.g., contact all DOTS servers, select one DOTS server among the list). Such behavior is specified in other documents (e.g., [DOTS-MH]).

CoAP URIs

The DOTS server MUST support the use of the path prefix of "/.well- known/" as defined in RFC8615 and the registered name of "dots". Each DOTS operation is denoted by a path suffix that indicates the intended operation. The operation path (Table 1) is appended to the path prefix to form the URI used with a CoAP request to perform the desired DOTS operation.

     +-----------------------+----------------+-------------+
     | Operation             | Operation Path | Details     |
     +=======================+================+=============+
     | Mitigation            | /mitigate      | Section 4.4 |
     +-----------------------+----------------+-------------+
     | Session configuration | /config        | Section 4.5 |
     +-----------------------+----------------+-------------+
     | Heartbeat             | /hb            | Section 4.7 |
     +-----------------------+----------------+-------------+
            Table 1: Operations and Corresponding URIs

Happy Eyeballs for DOTS Signal Channel

RFC8612 mentions that DOTS agents will have to support both connectionless and connection-oriented protocols. As such, the DOTS signal channel is designed to operate with DTLS over UDP and TLS over TCP. Further, a DOTS client may acquire a list of IPv4 and IPv6 addresses (Section 4.1), each of which can be used to contact the DOTS server using UDP and TCP. If no list of IPv4 and IPv6 addresses to contact the DOTS server is configured (or discovered), the DOTS client adds the IPv4/IPv6 addresses of its default router to the candidate list to contact the DOTS server.

The following specifies the procedure to follow to select the address family and the transport protocol for sending DOTS signal channel messages.

Such a procedure is needed to avoid experiencing long connection delays. For example, if an IPv4 path to a DOTS server is functional, but the DOTS server's IPv6 path is nonfunctional, a dual-stack DOTS client may experience a significant connection delay compared to an IPv4-only DOTS client in the same network conditions. The other problem is that if a middlebox between the DOTS client and DOTS server is configured to block UDP traffic, the DOTS client will fail to establish a DTLS association with the DOTS server; consequently, it will have to fall back to TLS over TCP, thereby incurring significant connection delays.

To overcome these connection setup problems, the DOTS client attempts to connect to its DOTS server(s) using both IPv6 and IPv4, and it tries both DTLS over UDP and TLS over TCP following a DOTS Happy Eyeballs approach. To some extent, this approach is similar to the Happy Eyeballs mechanism defined in RFC8305. The connection attempts are performed by the DOTS client when it initializes or, in general, when it has to select an address family and transport to contact its DOTS server. The results of the Happy Eyeballs procedure are used by the DOTS client for sending its subsequent messages to the DOTS server. The differences in behavior with respect to the Happy Eyeballs mechanism RFC8305 are listed below:

  • The order of preference of the DOTS signal channel address family
  and transport protocol (most preferred first) is the following:
  UDP over IPv6, UDP over IPv4, TCP over IPv6, and finally TCP over
  IPv4.  This order adheres to the address preference order
  specified in RFC6724 and the DOTS signal channel preference that
  promotes the use of UDP over TCP (to avoid TCP's head of line
  blocking).
  • After successfully establishing a connection, the DOTS client MUST
  cache information regarding the outcome of each connection attempt
  for a specific time period; it uses that information to avoid
  thrashing the network with subsequent attempts.  The cached
  information is flushed when its age exceeds a specific time period
  on the order of few minutes (e.g., 10 min).  Typically, if the
  DOTS client has to reestablish the connection with the same DOTS
  server within a few seconds after the Happy Eyeballs mechanism is
  completed, caching avoids thrashing the network especially in the
  presence of DDoS attack traffic.
  • If a DOTS signal channel session is established with TLS (but DTLS
  failed), the DOTS client periodically repeats the mechanism to
  discover whether DOTS signal channel messages with DTLS over UDP
  become available from the DOTS server; this is so the DOTS client
  can migrate the DOTS signal channel from TCP to UDP.  Such probing
  SHOULD NOT be done more frequently than every 24 hours and MUST
  NOT be done more frequently than every 5 minutes.

When connection attempts are made during an attack, the DOTS client SHOULD use a "Connection Attempt Delay" RFC8305 set to 100 ms.

In Figure 4, the DOTS client proceeds with the connection attempts following the rules in RFC8305. In this example, it is assumed that the IPv6 path is broken and UDP traffic is dropped by a middlebox, but this has little impact on the DOTS client because there is not a long delay before using IPv4 and TCP.

+-----------+                                         +-----------+
|DOTS Client|                                         |DOTS Server|
+-----------+                                         +-----------+
      |                                                     |
   T0 |--DTLS ClientHello, IPv6 ---->X                      |
   T1 |--DTLS ClientHello, IPv4 ---->X                      |
   T2 |--TCP SYN, IPv6-------------->X                      |
   T3 |--TCP SYN, IPv4------------------------------------->|
      |<-TCP SYNACK-----------------------------------------|
      |--TCP ACK------------------------------------------->|
      |<------------Establish TLS Session------------------>|
      |----------------DOTS signal------------------------->|
      |                                                     |
 Note:
  * Retransmission messages are not shown.
  * T1-T0=T2-T1=T3-T2= Connection Attempt Delay.
            Figure 4: DOTS Happy Eyeballs (Sample Flow)

A single DOTS signal channel between DOTS agents can be used to exchange multiple DOTS signal messages. To reduce DOTS client and DOTS server workload, DOTS clients SHOULD reuse the (D)TLS session.

DOTS Mitigation Methods

The following methods are used by a DOTS client to request, withdraw, or retrieve the status of mitigation requests:

PUT: DOTS clients use the PUT method to request mitigation from

         a DOTS server (Section 4.4.1).  During active mitigation,
         DOTS clients may use PUT requests to carry mitigation
         efficacy updates to the DOTS server (Section 4.4.3).

GET: DOTS clients may use the GET method to subscribe to DOTS

         server status messages or to retrieve the list of its
         mitigations maintained by a DOTS server (Section 4.4.2).

DELETE: DOTS clients use the DELETE method to withdraw a request

         for mitigation from a DOTS server (Section 4.4.4).

Mitigation request and response messages are marked as Non- confirmable messages (Section 2.2 of RFC7252).

DOTS agents MUST NOT send more than one UDP datagram per round-trip time (RTT) to the peer DOTS agent on average following the data transmission guidelines discussed in Section 3.1.3 of RFC8085.

Requests marked by the DOTS client as Non-confirmable messages are sent at regular intervals until a response is received from the DOTS server. If the DOTS client cannot maintain an RTT estimate, it MUST NOT send more than one Non-confirmable request every 3 seconds, and SHOULD use an even less aggressive rate whenever possible (case 2 in Section 3.1.3 of RFC8085). Mitigation requests MUST NOT be delayed because of checks on probing rate (Section 4.7 of RFC7252).

JSON encoding of YANG modeled data RFC7951 is used to illustrate the various methods defined in the following subsections. Also, the examples use the Labels defined in Sections 9.6.2, 9.6.3, 9.6.4, and 9.6.5.

Request Mitigation

When a DOTS client requires mitigation for some reason, the DOTS client uses the CoAP PUT method to send a mitigation request to its DOTS server(s) (Figures 5 and 6).

If a DOTS client is entitled to solicit the DOTS service, the DOTS server enables mitigation on behalf of the DOTS client by communicating the DOTS client's request to a mitigator (which may be co-located with the DOTS server) and relaying the feedback of the thus-selected mitigator to the requesting DOTS client.

 Header: PUT (Code=0.03)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "mitigate"
 Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
 Uri-Path: "mid=123"
 Content-Format: "application/dots+cbor"
 {
   ...
 }
          Figure 5: PUT to Convey DOTS Mitigation Requests

The order of the Uri-Path options is important as it defines the CoAP resource. In particular, 'mid' MUST follow 'cuid'.

The additional Uri-Path parameters to those defined in Section 4.2 are as follows:

cuid: Stands for Client Unique Identifier. A globally unique

     identifier that is meant to prevent collisions among DOTS
     clients, especially those from the same domain.  It MUST be
     generated by DOTS clients.
     For the reasons discussed in Appendix A, implementations SHOULD
     set 'cuid' using the following procedure: first, the DOTS
     client inputs one of the following into the SHA-256 RFC6234
     cryptographic hash: the DER-encoded ASN.1 representation of the
     Subject Public Key Info (SPKI) of its X.509 certificate
     RFC5280, its raw public key RFC7250, the "Pre-Shared Key
     (PSK) identity" it uses in the TLS 1.2 ClientKeyExchange
     message, or the "identity" it uses in the "pre_shared_key" TLS
     1.3 extension.  Then, the output of the cryptographic hash
     algorithm is truncated to 16 bytes; truncation is done by
     stripping off the final 16 bytes.  The truncated output is
     base64url encoded (Section 5 of RFC4648) with the trailing
     "=" removed from the encoding, and the resulting value used as
     the 'cuid'.
     The 'cuid' is intended to be stable when communicating with a
     given DOTS server, i.e., the 'cuid' used by a DOTS client
     SHOULD NOT change over time.  Distinct 'cuid' values MAY be
     used by a single DOTS client per DOTS server.
     If a DOTS client has to change its 'cuid' for some reason, it
     MUST NOT do so when mitigations are still active for the old
     'cuid'.  The 'cuid' SHOULD be 22 characters to avoid DOTS
     signal message fragmentation over UDP.  Furthermore, if that
     DOTS client created aliases and filtering entries at the DOTS
     server by means of the DOTS data channel, it MUST delete all
     the entries bound to the old 'cuid' and reinstall them using
     the new 'cuid'.
     DOTS servers MUST return 4.09 (Conflict) error code to a DOTS
     peer to notify that the 'cuid' is already in use by another
     DOTS client.  Upon receipt of that error code, a new 'cuid'
     MUST be generated by the DOTS peer (e.g., using RFC4122).
     Client-domain DOTS gateways MUST handle 'cuid' collision
     directly and it is RECOMMENDED that 'cuid' collision is handled
     directly by server-domain DOTS gateways.
     DOTS gateways MAY rewrite the 'cuid' used by peer DOTS clients.
     Triggers for such rewriting are out of scope.
     This is a mandatory Uri-Path parameter.

mid: Identifier for the mitigation request represented with an

     integer.  This identifier MUST be unique for each mitigation
     request bound to the DOTS client, i.e., the 'mid' parameter
     value in the mitigation request needs to be unique (per 'cuid'
     and DOTS server) relative to the 'mid' parameter values of
     active mitigation requests conveyed from the DOTS client to the
     DOTS server.
     In order to handle out-of-order delivery of mitigation
     requests, 'mid' values MUST increase monotonically.
     If the 'mid' value has reached 3/4 of (2^(32) - 1) (i.e.,
     3221225471) and no attack is detected, the DOTS client MUST
     reset 'mid' to 0 to handle 'mid' rollover.  If the DOTS client
     maintains mitigation requests with preconfigured scopes, it
     MUST recreate them with the 'mid' restarting at 0.
     This identifier MUST be generated by the DOTS client.
     This is a mandatory Uri-Path parameter.

'cuid' and 'mid' MUST NOT appear in the PUT request message body (Figure 6). The schema in Figure 6 uses the types defined in Section 6. Note that this figure (and other similar figures depicting a schema) are non-normative sketches of the structure of the message.

 {
   "ietf-dots-signal-channel:mitigation-scope": {
     "scope": [
       {
         "target-prefix": [
            "string"
          ],
         "target-port-range": [
            {
              "lower-port": number,
              "upper-port": number
            }
          ],
          "target-protocol": [
            number
          ],
          "target-fqdn": [
            "string"
          ],
          "target-uri": [
            "string"
          ],
          "alias-name": [
            "string"
          ],
         "lifetime": number,
         "trigger-mitigation": true|false
       }
     ]
   }
 }
   Figure 6: PUT to Convey DOTS Mitigation Requests (Message Body
                              Schema)

The parameters in the CBOR body (Figure 6) of the PUT request are described below:

target-prefix: A list of prefixes identifying resources under

  attack.  Prefixes are represented using Classless Inter-Domain
  Routing (CIDR) notation RFC4632.
  As a reminder, the prefix length must be less than or equal to 32
  (or 128) for IPv4 (or IPv6).
  The prefix list MUST NOT include broadcast, loopback, or multicast
  addresses.  These addresses are considered to be invalid values.
  In addition, the DOTS server MUST validate that target prefixes
  are within the scope of the DOTS client domain.  Other validation
  checks may be supported by DOTS servers.
  This is an optional attribute.

target-port-range: A list of port numbers bound to resources under

  attack.
  A port range is defined by two bounds, a lower port number
  ('lower-port') and an upper port number ('upper-port').  When only
  'lower-port' is present, it represents a single port number.
  For TCP, UDP, Stream Control Transmission Protocol (SCTP)
  RFC4960, or Datagram Congestion Control Protocol (DCCP)
  RFC4340, a range of ports can be, for example, 0-1023,
  1024-65535, or 1024-49151.
  This is an optional attribute.

target-protocol: A list of protocols involved in an attack. Values

  are taken from the IANA protocol registry [IANA-Proto].
  If 'target-protocol' is not specified, then the request applies to
  any protocol.
  This is an optional attribute.

target-fqdn: A list of Fully Qualified Domain Names (FQDNs)

  identifying resources under attack RFC8499.
  How a name is passed to an underlying name resolution library is
  implementation and deployment specific.  Nevertheless, once the
  name is resolved into one or multiple IP addresses, DOTS servers
  MUST apply the same validation checks as those for 'target-
  prefix'.
  The use of FQDNs may be suboptimal because:
  *  It induces both an extra load and increased delays on the DOTS
     server to handle and manage DNS resolution requests.
  *  It does not guarantee that the DOTS server will resolve a name
     to the same IP addresses that the DOTS client does.
  This is an optional attribute.

target-uri: A list of URIs RFC3986 identifying resources under

  attack.
  The same validation checks used for 'target-fqdn' MUST be followed
  by DOTS servers to validate a target URI.
  This is an optional attribute.

alias-name: A list of aliases of resources for which the mitigation

  is requested.  Aliases can be created using the DOTS data channel
  (Section 6.1 of RFC8783), direct configuration, or other means.
  An alias is used in subsequent signal channel exchanges to refer
  more efficiently to the resources under attack.
  This is an optional attribute.

lifetime: Lifetime of the mitigation request in seconds. The

  RECOMMENDED lifetime of a mitigation request is 3600 seconds: this
  value was chosen to be long enough so that refreshing is not
  typically a burden on the DOTS client, while still making the
  request expire in a timely manner when the client has unexpectedly
  quit.  DOTS clients MUST include this parameter in their
  mitigation requests.  Upon the expiry of this lifetime, and if the
  request is not refreshed, the mitigation request is removed.  The
  request can be refreshed by sending the same request again.
  A lifetime of '0' in a mitigation request is an invalid value.
  A lifetime of negative one (-1) indicates indefinite lifetime for
  the mitigation request.  The DOTS server MAY refuse an indefinite
  lifetime, for policy reasons; the granted lifetime value is
  returned in the response.  DOTS clients MUST be prepared to not be
  granted mitigations with indefinite lifetimes.
  The DOTS server MUST always indicate the actual lifetime in the
  response and the remaining lifetime in status messages sent to the
  DOTS client.
  This is a mandatory attribute.

trigger-mitigation: If the parameter value is set to 'false', DDoS

  mitigation will not be triggered for the mitigation request unless
  the DOTS signal channel session is lost.
  If the DOTS client ceases to respond to heartbeat messages, the
  DOTS server can detect that the DOTS signal channel session is
  lost.  More details are discussed in Section 4.7.
  The default value of the parameter is 'true' (that is, the
  mitigation starts immediately).  If 'trigger-mitigation' is not
  present in a request, this is equivalent to receiving a request
  with 'trigger-mitigation' set to 'true'.
  This is an optional attribute.

In deployments where server-domain DOTS gateways are enabled, identity information about the origin source client domain ('cdid') SHOULD be propagated to the DOTS server. That information is meant to assist the DOTS server in enforcing some policies such as grouping DOTS clients that belong to the same DOTS domain, limiting the number of DOTS requests, and identifying the mitigation scope. These policies can be enforced per client, per client domain, or both. Also, the identity information may be used for auditing and debugging purposes.

Figure 7 shows an example of a request relayed by a server-domain DOTS gateway.

 Header: PUT (Code=0.03)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "mitigate"
 Uri-Path: "cdid=7eeaf349529eb55ed50113"
 Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
 Uri-Path: "mid=123"
 Content-Format: "application/dots+cbor"
 {
   ...
 }
   Figure 7: PUT for DOTS Mitigation Request as Relayed by a DOTS
                              Gateway

A server-domain DOTS gateway SHOULD add the following Uri-Path parameter:

cdid: Stands for Client Domain Identifier. The 'cdid' is conveyed

     by a server-domain DOTS gateway to propagate the source domain
     identity from the gateway's client-facing side to the gateway's
     server-facing side, and from the gateway's server-facing side
     to the DOTS server. 'cdid' may be used by the final DOTS server
     for policy enforcement purposes (e.g., enforce a quota on
     filtering rules).  These policies are deployment specific.
     Server-domain DOTS gateways SHOULD support a configuration
     option to instruct whether 'cdid' parameter is to be inserted.
     In order to accommodate deployments that require enforcing per-
     client policies, per-client domain policies, or a combination
     thereof, server-domain DOTS gateways instructed to insert the
     'cdid' parameter MUST supply the SPKI hash of the DOTS client
     X.509 certificate, the DOTS client raw public key, or the hash
     of the "PSK identity" in the 'cdid', following the same rules
     for generating the hash conveyed in 'cuid', which is then used
     by the ultimate DOTS server to determine the corresponding
     client's domain.  The 'cdid' generated by a server-domain
     gateway is likely to be the same as the 'cuid' except the case
     in which the DOTS message was relayed by a client-domain DOTS
     gateway or the 'cuid' was generated from a rogue DOTS client.
     If a DOTS client is provisioned, for example, with distinct
     certificates as a function of the peer server-domain DOTS
     gateway, distinct 'cdid' values may be supplied by a server-
     domain DOTS gateway.  The ultimate DOTS server MUST treat those
     'cdid' values as equivalent.
     The 'cdid' attribute MUST NOT be generated and included by DOTS
     clients.
     DOTS servers MUST ignore 'cdid' attributes that are directly
     supplied by source DOTS clients or client-domain DOTS gateways.
     This implies that first server-domain DOTS gateways MUST strip
     'cdid' attributes supplied by DOTS clients.  DOTS servers
     SHOULD support a configuration parameter to identify DOTS
     gateways that are trusted to supply 'cdid' attributes.
     Only single-valued 'cdid' are defined in this document.  That
     is, only the first on-path server-domain DOTS gateway can
     insert a 'cdid' value.  This specification does not allow
     multiple server-domain DOTS gateways, whenever involved in the
     path, to insert a 'cdid' value for each server-domain gateway.
     This is an optional Uri-Path.  When present, 'cdid' MUST be
     positioned before 'cuid'.

A DOTS gateway SHOULD add the CoAP Hop-Limit option RFC8768.

Because of the complexity of handling partial failure cases, this specification does not allow the inclusion of multiple mitigation requests in the same PUT request. Concretely, a DOTS client MUST NOT include multiple entries in the 'scope' array of the same PUT request.

FQDN and URI mitigation scopes may be thought of as a form of scope alias, in which the addresses associated with the domain name or URI (as resolved by the DOTS server) represent the scope of the mitigation. Particularly, the IP addresses to which the host subcomponent of authority component of a URI resolves represent the 'target-prefix', the URI scheme represents the 'target-protocol', the port subcomponent of authority component of a URI represents the 'target-port-range'. If the optional port information is not present in the authority component, the default port defined for the URI scheme represents the 'target-port'.

In the PUT request, at least one of the attributes 'target-prefix', 'target-fqdn','target-uri', or 'alias-name' MUST be present.

Attributes and Uri-Path parameters with empty values MUST NOT be present in a request as an empty value will render the entire request invalid.

Figure 8 shows a PUT request example to signal that servers 2001:db8:6401::1 and 2001:db8:6401::2 are receiving attack traffic on TCP port numbers 80, 8080, and 443. The presence of 'cdid' indicates that a server-domain DOTS gateway has modified the initial PUT request sent by the DOTS client. Note that 'cdid' MUST NOT appear in the PUT request message body.

 Header: PUT (Code=0.03)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "mitigate"
 Uri-Path: "cdid=7eeaf349529eb55ed50113"
 Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
 Uri-Path: "mid=123"
 Content-Format: "application/dots+cbor"
 {
   "ietf-dots-signal-channel:mitigation-scope": {
     "scope": [
       {
         "target-prefix": [
            "2001:db8:6401::1/128",
            "2001:db8:6401::2/128"
          ],
         "target-port-range": [
           {
             "lower-port": 80
           },
           {
             "lower-port": 443
           },
           {
              "lower-port": 8080
           }
          ],
          "target-protocol": [
            6
          ],
         "lifetime": 3600
       }
     ]
   }
 }
       Figure 8: PUT for DOTS Mitigation Request (An Example)

The corresponding CBOR encoding format for the payload is shown in Figure 9.

  A1                                      # map(1)
     01                                   # unsigned(1)
     A1                                   # map(1)
        02                                # unsigned(2)
        81                                # array(1)
           A4                             # map(4)
              06                          # unsigned(6)
              82                          # array(2)
                 74                       # text(20)
                    323030313A6462383A363430313A3A312F313238
                 74                       # text(20)
                    323030313A6462383A363430313A3A322F313238
              07                          # unsigned(7)
              83                          # array(3)
                 A1                       # map(1)
                    08                    # unsigned(8)
                    18 50                 # unsigned(80)
                 A1                       # map(1)
                    08                    # unsigned(8)
                    19 01BB               # unsigned(443)
                 A1                       # map(1)
                    08                    # unsigned(8)
                    19 1F90               # unsigned(8080)
              0A                          # unsigned(10)
              81                          # array(1)
                 06                       # unsigned(6)
              0E                          # unsigned(14)
              19 0E10                     # unsigned(3600)
          Figure 9: PUT for DOTS Mitigation Request (CBOR)

In both DOTS signal and data channel sessions, the DOTS client MUST authenticate itself to the DOTS server (Section 8). The DOTS server MAY use the algorithm presented in Section 7 of RFC7589 to derive the DOTS client identity or username from the client certificate. The DOTS client identity allows the DOTS server to accept mitigation requests with scopes that the DOTS client is authorized to manage.

The DOTS server couples the DOTS signal and data channel sessions using the DOTS client identity and optionally the 'cdid' parameter value, so the DOTS server can validate whether the aliases conveyed in the mitigation request were indeed created by the same DOTS client using the DOTS data channel session. If the aliases were not created by the DOTS client, the DOTS server MUST return 4.00 (Bad Request) in the response.

The DOTS server couples the DOTS signal channel sessions using the DOTS client identity and optionally the 'cdid' parameter value, and the DOTS server uses 'mid' and 'cuid' Uri-Path parameter values to detect duplicate mitigation requests. If the mitigation request contains the 'alias-name' and other parameters identifying the target resources (such as 'target-prefix', 'target-port-range', 'target- fqdn', or 'target-uri'), the DOTS server appends the parameter values in 'alias-name' with the corresponding parameter values in 'target- prefix', 'target-port-range', 'target-fqdn', or 'target-uri'.

The DOTS server indicates the result of processing the PUT request using CoAP Response Codes. CoAP 2.xx codes are success. CoAP 4.xx codes are some sort of invalid requests (client errors). COAP 5.xx codes are returned if the DOTS server is in an error state or is currently unavailable to provide mitigation in response to the mitigation request from the DOTS client.

Figure 10 shows an example response to a PUT request that is successfully processed by a DOTS server (i.e., CoAP 2.xx Response Codes). This version of the specification forbids 'cuid' and 'cdid' (if used) to be returned in a response message body.

{

 "ietf-dots-signal-channel:mitigation-scope": {
    "scope": [
       {
         "mid": 123,
         "lifetime": 3600
       }
     ]
  }

}

                   Figure 10: 2.xx Response Body

If the request is missing a mandatory attribute, does not include 'cuid' or 'mid' Uri-Path options, includes multiple 'scope' parameters, or contains invalid or unknown parameters, the DOTS server MUST reply with 4.00 (Bad Request). DOTS agents can safely ignore comprehension-optional parameters they don't understand (Section 9.6.1.1).

A DOTS server that receives a mitigation request with a 'lifetime' set to '0' MUST reply with a 4.00 (Bad Request).

If the DOTS server does not find the 'mid' parameter value conveyed in the PUT request in its configuration data, it MAY accept the mitigation request by sending back a 2.01 (Created) response to the DOTS client; the DOTS server will consequently try to mitigate the attack. A DOTS server could reject mitigation requests when it is near capacity or needs to rate-limit a particular client, for example.

The relative order of two mitigation requests with the same 'trigger- mitigation' type from a DOTS client is determined by comparing their respective 'mid' values. If two mitigation requests with the same 'trigger-mitigation' type have overlapping mitigation scopes, the mitigation request with the highest numeric 'mid' value will override the other mitigation request. Two mitigation requests from a DOTS client have overlapping scopes if there is a common IP address, IP prefix, FQDN, URI, or alias. To avoid maintaining a long list of overlapping mitigation requests (i.e., requests with the same 'trigger-mitigation' type and overlapping scopes) from a DOTS client and to avoid error-prone provisioning of mitigation requests from a DOTS client, the overlapped lower numeric 'mid' MUST be automatically deleted and no longer available at the DOTS server. For example, if the DOTS server receives a mitigation request that overlaps with an existing mitigation with a higher numeric 'mid', the DOTS server rejects the request by returning 4.09 (Conflict) to the DOTS client. The response includes enough information for a DOTS client to recognize the source of the conflict as described below in the 'conflict-information' subtree with only the relevant nodes listed:

conflict-information: Indicates that a mitigation request is

  conflicting with another mitigation request.  This optional
  attribute has the following structure:
  conflict-cause:  Indicates the cause of the conflict.  The
     following values are defined:
     1:  Overlapping targets. 'conflict-scope' provides more details
         about the conflicting target clauses.
  conflict-scope:  Characterizes the exact conflict scope.  It may
     include a list of IP addresses, a list of prefixes, a list of
     port numbers, a list of target protocols, a list of FQDNs, a
     list of URIs, a list of aliases, or a 'mid'.

If the DOTS server receives a mitigation request that overlaps with an active mitigation request, but both have distinct 'trigger- mitigation' types, the DOTS server SHOULD deactivate (absent explicit policy/configuration otherwise) the mitigation request with 'trigger- mitigation' set to 'false'. Particularly, if the mitigation request with 'trigger-mitigation' set to 'false' is active, the DOTS server withdraws the mitigation request (i.e., status code is set to '7' as defined in Table 3) and transitions the status of the mitigation request to '8'.

Upon DOTS signal channel session loss with a peer DOTS client, the DOTS server SHOULD withdraw (absent explicit policy/configuration otherwise) any active mitigation requests that overlap with mitigation requests having 'trigger-mitigation' set to 'false' from that DOTS client, as the loss of the session implicitly activates these preconfigured mitigation requests, and they take precedence. Note that the active-but-terminating period is not observed for mitigations withdrawn at the initiative of the DOTS server.

DOTS clients may adopt various strategies for setting the scopes of immediate and preconfigured mitigation requests to avoid potential conflicts. For example, a DOTS client may tweak preconfigured scopes so that the scope of any overlapping immediate mitigation request will be a subset of the preconfigured scopes. Also, if an immediate mitigation request overlaps with any of the preconfigured scopes, the DOTS client sets the scope of the overlapping immediate mitigation request to be a subset of the preconfigured scopes, so as to get a broad mitigation when the DOTS signal channel collapses and to maximize the chance of recovery.

If the request conflicts with an existing mitigation request from a different DOTS client, the DOTS server may return 2.01 (Created) or 4.09 (Conflict) to the requesting DOTS client. If the DOTS server decides to maintain the new mitigation request, the DOTS server returns 2.01 (Created) to the requesting DOTS client. If the DOTS server decides to reject the new mitigation request, the DOTS server returns 4.09 (Conflict) to the requesting DOTS client. For both 2.01 (Created) and 4.09 (Conflict) responses, the response includes enough information for a DOTS client to recognize the source of the conflict as described below:

conflict-information: Indicates that a mitigation request is

  conflicting with another mitigation request(s) from other DOTS
  client(s).  This optional attribute has the following structure:
  conflict-status:  Indicates the status of a conflicting mitigation
     request.  The following values are defined:
     1:  DOTS server has detected conflicting mitigation requests
         from different DOTS clients.  This mitigation request is
         currently inactive until the conflicts are resolved.
         Another mitigation request is active.
     2:  DOTS server has detected conflicting mitigation requests
         from different DOTS clients.  This mitigation request is
         currently active.
     3:  DOTS server has detected conflicting mitigation requests
         from different DOTS clients.  All conflicting mitigation
         requests are inactive.
  conflict-cause:  Indicates the cause of the conflict.  The
     following values are defined:
     1:  Overlapping targets. 'conflict-scope' provides more details
         about the conflicting target clauses.
     2:  Conflicts with an existing accept-list.  This code is
         returned when the DDoS mitigation detects source addresses/
         prefixes in the accept-listed ACLs are attacking the
         target.
     3:  CUID Collision.  This code is returned when a DOTS client
         uses a 'cuid' that is already used by another DOTS client.
         This code is an indication that the request has been
         rejected and a new request with a new 'cuid' is to be re-
         sent by the DOTS client (see the example shown in
         Figure 11).  Note that 'conflict-status', 'conflict-scope',
         and 'retry-timer' MUST NOT be returned in the error
         response.
  conflict-scope:  Characterizes the exact conflict scope.  It may
     include a list of IP addresses, a list of prefixes, a list of
     port numbers, a list of target protocols, a list of FQDNs, a
     list of URIs, a list of aliases, or references to conflicting
     ACLs (by an 'acl-name', typically RFC8783).
  retry-timer:  Indicates, in seconds, the time after which the DOTS
     client may reissue the same request.  The DOTS server returns
     'retry-timer' only to DOTS client(s) for which a mitigation
     request is deactivated.  Any retransmission of the same
     mitigation request before the expiry of this timer is likely to
     be rejected by the DOTS server for the same reasons.
     The 'retry-timer' SHOULD be equal to the lifetime of the active
     mitigation request resulting in the deactivation of the
     conflicting mitigation request.
     If the DOTS server decides to maintain a state for the
     deactivated mitigation request, the DOTS server updates the
     lifetime of the deactivated mitigation request to 'retry-timer
     + 45 seconds' (that is, this mitigation request remains
     deactivated for the entire duration of 'retry-timer + 45
     seconds') so that the DOTS client can refresh the deactivated
     mitigation request after 'retry-timer' seconds, but before the
     expiry of the lifetime, and check if the conflict is resolved.
 Header: PUT (Code=0.03)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "mitigate"
 Uri-Path: "cuid=7eeaf349529eb55ed50113"
 Uri-Path: "mid=12"
 (1) Request with a conflicting 'cuid'
 {
   "ietf-dots-signal-channel:mitigation-scope": {
      "scope": [
         {
           "conflict-information": {
             "conflict-cause": "cuid-collision"
            }
         }
       ]
    }
 }
 (2) Message body of the 4.09 (Conflict) response
   from the DOTS server
 Header: PUT (Code=0.03)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "mitigate"
 Uri-Path: "cuid=f30d281ce6b64fc5a0b91e"
 Uri-Path: "mid=12"
 (3) Request with a new 'cuid'
           Figure 11: Example of Generating a New 'cuid'

As an active attack evolves, DOTS clients can adjust the scope of requested mitigation as necessary, by refining the scope of resources requiring mitigation. This can be achieved by sending a PUT request with a new 'mid' value that will override the existing one with overlapping mitigation scopes.

For a mitigation request to continue beyond the initial negotiated lifetime, the DOTS client has to refresh the current mitigation request by sending a new PUT request. This PUT request MUST use the same 'mid' value, and it MUST repeat all the other parameters as sent in the original mitigation request apart from a possible change to the 'lifetime' parameter value. In such a case, the DOTS server MAY update the mitigation request, and a 2.04 (Changed) response is returned to indicate a successful update of the mitigation request. If this is not the case, the DOTS server MUST reject the request with a 4.00 (Bad Request).

Retrieve Information Related to a Mitigation

A GET request is used by a DOTS client to retrieve information (including status) of DOTS mitigations from a DOTS server.

'cuid' is a mandatory Uri-Path parameter for GET requests.

Uri-Path parameters with empty values MUST NOT be present in a request.

The same considerations for manipulating the 'cdid' parameter by server-domain DOTS gateways specified in Section 4.4.1 MUST be followed for GET requests.

The 'c' Uri-Query option is used to control selection of configuration and non-configuration data nodes. Concretely, the 'c' (content) parameter and its permitted values defined in Table 2 [COMI] can be used to retrieve non-configuration data (attack mitigation status), configuration data, or both. The DOTS server MAY support this optional filtering capability. It can safely ignore it if not supported. If the DOTS client supports the optional filtering capability, it SHOULD use "c=n" query (to get back only the dynamically changing data) or "c=c" query (to get back the static configuration values) when the DDoS attack is active to limit the size of the response.

  +-------+-----------------------------------------------------+
  | Value | Description                                         |
  +=======+=====================================================+
  | c     | Return only configuration descendant data nodes     |
  +-------+-----------------------------------------------------+
  | n     | Return only non-configuration descendant data nodes |
  +-------+-----------------------------------------------------+
  | a     | Return all descendant data nodes                    |
  +-------+-----------------------------------------------------+
           Table 2: Permitted Values of the 'c' Parameter

The DOTS client can use block-wise transfer RFC7959 to get the list of all its mitigations maintained by a DOTS server, it can send a Block2 Option in a GET request with NUM = 0 to aid in limiting the size of the response. If the representation of all the active mitigation requests associated with the DOTS client does not fit within a single datagram, the DOTS server MUST use the Block2 Option with NUM = 0 in the GET response. The Size2 Option may be conveyed in the response to indicate the total size of the resource representation. The DOTS client retrieves the rest of the representation by sending additional GET requests with Block2 Options containing NUM values greater than zero. The DOTS client MUST adhere to the block size preferences indicated by the DOTS server in the response. If the DOTS server uses the Block2 Option in the GET response, and the response is for a dynamically changing resource (e.g., "c=n" or "c=a" query), the DOTS server MUST include the ETag Option in the response. The DOTS client MUST include the same ETag value in subsequent GET requests to retrieve the rest of the representation.

The following examples illustrate how a DOTS client retrieves active mitigation requests from a DOTS server. In particular:

  • Figure 12 shows the example of a GET request to retrieve all DOTS
  mitigation requests signaled by a DOTS client.
  • Figure 13 shows the example of a GET request to retrieve a
  specific DOTS mitigation request signaled by a DOTS client.  The
  configuration data to be reported in the response is formatted in
  the same order as it was processed by the DOTS server in the
  original mitigation request.

These two examples assume the default of "c=a"; that is, the DOTS client asks for all data to be reported by the DOTS server.

 Header: GET (Code=0.01)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "mitigate"
 Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
 Observe: 0
      Figure 12: GET to Retrieve All DOTS Mitigation Requests
 Header: GET (Code=0.01)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "mitigate"
 Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
 Uri-Path: "mid=12332"
 Observe: 0
   Figure 13: GET to Retrieve a Specific DOTS Mitigation Request

If the DOTS server does not find the 'mid' Uri-Path value conveyed in the GET request in its configuration data for the requesting DOTS client, it MUST respond with a 4.04 (Not Found) error Response Code. Likewise, the same error MUST be returned as a response to a request to retrieve all mitigation records (i.e., 'mid' Uri-Path is not defined) of a given DOTS client if the DOTS server does not find any mitigation record for that DOTS client. As a reminder, a DOTS client is identified by its identity (e.g., client certificate, 'cuid') and optionally the 'cdid'.

Figure 14 shows a response example of all active mitigation requests associated with the DOTS client as maintained by the DOTS server. The response indicates the mitigation status of each mitigation request.

{

 "ietf-dots-signal-channel:mitigation-scope": {
   "scope": [
     {
       "mid": 12332,
       "mitigation-start": "1507818434",
       "target-prefix": [
            "2001:db8:6401::1/128",
            "2001:db8:6401::2/128"
       ],
       "target-protocol": [
         17
       ],
       "lifetime": 1756,
       "status": "attack-successfully-mitigated",
       "bytes-dropped": "134334555",
       "bps-dropped": "43344",
       "pkts-dropped": "333334444",
       "pps-dropped": "432432"
     },
     {
       "mid": 12333,
       "mitigation-start": "1507818393",
       "target-prefix": [
            "2001:db8:6401::1/128",
            "2001:db8:6401::2/128"
       ],
       "target-protocol": [
         6
       ],
       "lifetime": 1755,
       "status": "attack-stopped",
       "bytes-dropped": "0",
       "bps-dropped": "0",
       "pkts-dropped": "0",
       "pps-dropped": "0"
     }
   ]
 }

}

             Figure 14: Response Body to a GET Request

The mitigation status parameters are described below:

mitigation-start: Mitigation start time is expressed in seconds

  relative to 1970-01-01T00:00Z in UTC time (Section 2.4.1 of
  RFC7049).  The CBOR encoding is modified so that the leading tag
  1 (epoch-based date/time) MUST be omitted.
  This is a mandatory attribute when an attack mitigation is active.
  Particularly, 'mitigation-start' is not returned for a mitigation
  with 'status' code set to 8.

lifetime: The remaining lifetime of the mitigation request, in

  seconds.
  This is a mandatory attribute.

status: Status of attack mitigation. The various possible values of

  'status' parameter are explained in Table 3.
  This is a mandatory attribute.

bytes-dropped: The total dropped byte count for the mitigation

  request since the attack mitigation was triggered.  The count
  wraps around when it reaches the maximum value of unsigned
  integer64.
  This is an optional attribute.

bps-dropped: The average number of dropped bytes per second for the

  mitigation request since the attack mitigation was triggered.
  This average SHOULD be over five-minute intervals (that is,
  measuring bytes into five-minute buckets and then averaging these
  buckets over the time since the mitigation was triggered).
  This is an optional attribute.

pkts-dropped: The total number of dropped packet count for the

  mitigation request since the attack mitigation was triggered.  The
  count wraps around when it reaches the maximum value of unsigned
  integer64.
  This is an optional attribute.

pps-dropped: The average number of dropped packets per second for

  the mitigation request since the attack mitigation was triggered.
  This average SHOULD be over five-minute intervals (that is,
  measuring packets into five-minute buckets and then averaging
  these buckets over the time since the mitigation was triggered).
  This is an optional attribute.
+-----------+----------------------------------------------------+
| Parameter | Description                                        |
|     Value |                                                    |
+===========+====================================================+
|         1 | Attack mitigation setup is in progress (e.g.,      |
|           | changing the network path to redirect the inbound  |
|           | traffic to a DOTS mitigator).                      |
+-----------+----------------------------------------------------+
|         2 | Attack is being successfully mitigated (e.g.,      |
|           | traffic is redirected to a DDoS mitigator and      |
|           | attack traffic is dropped).                        |
+-----------+----------------------------------------------------+
|         3 | Attack has stopped and the DOTS client can         |
|           | withdraw the mitigation request.  This status code |
|           | will be transmitted for immediate mitigation       |
|           | requests till the mitigation is withdrawn or the   |
|           | lifetime expires.  For mitigation requests with    |
|           | preconfigured scopes (i.e., 'trigger-mitigation'   |
|           | set to 'false'), this status code will be          |
|           | transmitted four times and then transition to "8". |
+-----------+----------------------------------------------------+
|         4 | Attack has exceeded the mitigation provider        |
|           | capability.                                        |
+-----------+----------------------------------------------------+
|         5 | DOTS client has withdrawn the mitigation request   |
|           | and the mitigation is active but terminating.      |
+-----------+----------------------------------------------------+
|         6 | Attack mitigation is now terminated.               |
+-----------+----------------------------------------------------+
|         7 | Attack mitigation is withdrawn (by the DOTS        |
|           | server).  If a mitigation request with 'trigger-   |
|           | mitigation' set to 'false' is withdrawn because it |
|           | overlaps with an immediate mitigation request,     |
|           | this status code will be transmitted four times    |
|           | and then transition to "8" for the mitigation      |
|           | request with preconfigured scopes.                 |
+-----------+----------------------------------------------------+
|         8 | Attack mitigation will be triggered for the        |
|           | mitigation request only when the DOTS signal       |
|           | channel session is lost.                           |
+-----------+----------------------------------------------------+
              Table 3: Values of 'status' Parameter
DOTS Servers Sending Mitigation Status

The Observe Option defined in RFC7641 extends the CoAP core protocol with a mechanism for a CoAP client to "observe" a resource on a CoAP server: the client retrieves a representation of the resource and requests this representation be updated by the server as long as the client is interested in the resource. DOTS implementations MUST use the Observe Option for both 'mitigate' and 'config' (Section 4.2).

A DOTS client conveys the Observe Option set to '0' in the GET request to receive asynchronous notifications of attack mitigation status from the DOTS server.

Unidirectional mitigation notifications within the bidirectional signal channel enables asynchronous notifications between the agents. RFC7641 indicates that (1) a notification can be sent in a Confirmable or a Non-confirmable message, and (2) the message type used is typically application dependent and may be determined by the server for each notification individually. For the DOTS server application, the message type MUST always be set to Non-confirmable even if the underlying COAP library elects a notification to be sent in a Confirmable message. This overrides the behavior defined in Section 4.5 of RFC7641 to send a Confirmable message instead of a Non-confirmable message at least every 24 hours for the following reasons: First, the DOTS signal channel uses a heartbeat mechanism to determine if the DOTS client is alive. Second, Confirmable messages are not suitable during an attack.

Due to the higher likelihood of packet loss during a DDoS attack, the DOTS server periodically sends attack mitigation status to the DOTS client and also notifies the DOTS client whenever the status of the attack mitigation changes. If the DOTS server cannot maintain an RTT estimate, it MUST NOT send more than one asynchronous notification every 3 seconds, and SHOULD use an even less aggressive rate whenever possible (case 2 in Section 3.1.3 of RFC8085).

When conflicting requests are detected, the DOTS server enforces the corresponding policy (e.g., accept all requests, reject all requests, accept only one request but reject all the others, etc.). It is assumed that this policy is supplied by the DOTS server administrator or that it is a default behavior of the DOTS server implementation. Then, the DOTS server sends a notification message(s) to the DOTS client(s) at the origin of the conflict (refer to the conflict parameters defined in Section 4.4.1). A conflict notification message includes information about the conflict cause, scope, and the status of the mitigation request(s). For example:

  • A notification message with 'status' code set to '7 (Attack
  mitigation is withdrawn)' and 'conflict-status' set to '1' is sent
  to a DOTS client to indicate that an active mitigation request is
  deactivated because a conflict is detected.
  • A notification message with 'status' code set to '1 (Attack
  mitigation is in progress)' and 'conflict-status' set to '2' is
  sent to a DOTS client to indicate that this mitigation request is
  in progress, but a conflict is detected.

Upon receipt of a conflict notification message indicating that a mitigation request is deactivated because of a conflict, a DOTS client MUST NOT resend the same mitigation request before the expiry of 'retry-timer'. It is also recommended that DOTS clients support the means to alert administrators about mitigation conflicts.

A DOTS client that is no longer interested in receiving notifications from the DOTS server can simply "forget" the observation. When the DOTS server sends the next notification, the DOTS client will not recognize the token in the message and, thus, will return a Reset message. This causes the DOTS server to remove the associated entry. Alternatively, the DOTS client can explicitly de-register itself by issuing a GET request that has the Token field set to the token of the observation to be canceled and includes an Observe Option with the value set to '1' (de-register). The latter is more deterministic and, thus, is RECOMMENDED.

Figure 15 shows an example of a DOTS client requesting a DOTS server to send notifications related to a mitigation request. Note that for mitigations with preconfigured scopes (i.e., 'trigger-mitigation' set to 'false'), the state will need to transition from 3 (attack- stopped) to 8 (attack-mitigation-signal-loss).

+-----------+ +-----------+ |DOTS Client| |DOTS Server| +-----------+ +-----------+

     |                                          |
     |  GET /<mid>                              |
     |  Token: 0x4a                             | Registration
     |  Observe: 0                              |
     +----------------------------------------->|
     |                                          |
     |  2.05 Content                            |
     |  Token: 0x4a                             | Notification of
     |  Observe: 12                             | the current state
     |  status: "attack-mitigation-in-progress" |
     |<-----------------------------------------+
     |                                          |
     |  2.05 Content                            |
     |  Token: 0x4a                             | Notification upon
     |  Observe: 44                             | a state change
     |  status: "attack-successfully-mitigated" |
     |<-----------------------------------------+
     |                                          |
     |  2.05 Content                            |
     |  Token: 0x4a                             | Notification upon
     |  Observe: 60                             | a state change
     |  status: "attack-stopped"                |
     |<-----------------------------------------+
     |                                          |
                        ...
        Figure 15: Notifications of Attack Mitigation Status
DOTS Clients Polling for Mitigation Status

The DOTS client can send the GET request at frequent intervals without the Observe Option to retrieve the configuration data of the mitigation request and non-configuration data (i.e., the attack status). DOTS clients MAY be configured with a policy indicating the frequency of polling DOTS servers to get the mitigation status. This frequency MUST NOT be more than one UDP datagram per RTT as discussed in Section 3.1.3 of RFC8085.

If the DOTS server has been able to mitigate the attack and the attack has stopped, the DOTS server indicates as such in the status. In such case, the DOTS client recalls the mitigation request by issuing a DELETE request for this mitigation request (Section 4.4.4).

A DOTS client SHOULD react to the status of the attack per the information sent by the DOTS server rather than performing its own detection that the attack has been mitigated. This ensures that the DOTS client does not recall a mitigation request prematurely because it is possible that the DOTS client does not sense the DDoS attack on its resources, but the DOTS server could be actively mitigating the attack because the attack is not completely averted.

Efficacy Update from DOTS Clients

While DDoS mitigation is in progress, due to the likelihood of packet loss, a DOTS client MAY periodically transmit DOTS mitigation efficacy updates to the relevant DOTS server. A PUT request is used to convey the mitigation efficacy update to the DOTS server. This PUT request is treated as a refresh of the current mitigation.

The PUT request used for the efficacy update MUST include all the parameters used in the PUT request to carry the DOTS mitigation request (Section 4.4.1) unchanged apart from the 'lifetime' parameter value. If this is not the case, the DOTS server MUST reject the request with a 4.00 (Bad Request).

The If-Match Option (Section 5.10.8.1 of RFC7252) with an empty value is used to make the PUT request conditional on the current existence of the mitigation request. If UDP is used as transport, CoAP requests may arrive out of order. For example, the DOTS client may send a PUT request to convey an efficacy update to the DOTS server followed by a DELETE request to withdraw the mitigation request, but the DELETE request arrives at the DOTS server before the PUT request. To handle out-of-order delivery of requests, if an If- Match Option is present in the PUT request and the 'mid' in the request matches a mitigation request from that DOTS client, the request is processed by the DOTS server. If no match is found, the PUT request is silently ignored by the DOTS server.

An example of an efficacy update message, which includes an If-Match Option with an empty value, is depicted in Figure 16.

  Header: PUT (Code=0.03)
  Uri-Path: ".well-known"
  Uri-Path: "dots"
  Uri-Path: "mitigate"
  Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
  Uri-Path: "mid=123"
  If-Match:
  Content-Format: "application/dots+cbor"
  {
   "ietf-dots-signal-channel:mitigation-scope": {
     "scope": [
       {
         "target-prefix": [
            "2001:db8:6401::1/128",
            "2001:db8:6401::2/128"
          ],
         "target-port-range": [
           {
             "lower-port": 80
           },
           {
             "lower-port": 443
           },
           {
              "lower-port": 8080
           }
         ],
         "target-protocol": [
            6
         ],
         "attack-status": "under-attack"
       }
     ]
   }
  }
              Figure 16: An Example of Efficacy Update

The 'attack-status' parameter is a mandatory attribute when performing an efficacy update. The various possible values contained in the 'attack-status' parameter are described in Table 4.

        +-----------+-------------------------------------+
        | Parameter | Description                         |
        |     Value |                                     |
        +===========+=====================================+
        |         1 | The DOTS client determines that it  |
        |           | is still under attack.              |
        +-----------+-------------------------------------+
        |         2 | The DOTS client determines that the |
        |           | attack is successfully mitigated    |
        |           | (e.g., attack traffic is not seen). |
        +-----------+-------------------------------------+
            Table 4: Values of 'attack-status' Parameter

The DOTS server indicates the result of processing a PUT request using CoAP Response Codes. The Response Code 2.04 (Changed) is returned if the DOTS server has accepted the mitigation efficacy update. The error Response Code 5.03 (Service Unavailable) is returned if the DOTS server has erred or is incapable of performing the mitigation. As specified in RFC7252, 5.03 uses Max-Age Option to indicate the number of seconds after which to retry.

Withdraw a Mitigation

DELETE requests are used to withdraw DOTS mitigation requests from DOTS servers (Figure 17).

'cuid' and 'mid' are mandatory Uri-Path parameters for DELETE requests.

The same considerations for manipulating 'cdid' parameter by DOTS gateways, as specified in Section 4.4.1, MUST be followed for DELETE requests. Uri-Path parameters with empty values MUST NOT be present in a request.

 Header: DELETE (Code=0.04)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "mitigate"
 Uri-Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
 Uri-Path: "mid=123"
               Figure 17: Withdraw a DOTS Mitigation

If the DELETE request does not include 'cuid' and 'mid' parameters, the DOTS server MUST reply with a 4.00 (Bad Request).

Once the request is validated, the DOTS server immediately acknowledges a DOTS client's request to withdraw the DOTS signal using 2.02 (Deleted) Response Code with no response payload. A 2.02 (Deleted) Response Code is returned even if the 'mid' parameter value conveyed in the DELETE request does not exist in its configuration data before the request.

If the DOTS server finds the 'mid' parameter value conveyed in the DELETE request in its configuration data for the DOTS client, then to protect against route or DNS flapping caused by a DOTS client rapidly removing a mitigation, and to dampen the effect of oscillating attacks, the DOTS server MAY allow mitigation to continue for a limited period after acknowledging a DOTS client's withdrawal of a mitigation request. During this period, the DOTS server status messages SHOULD indicate that mitigation is active but terminating (Section 4.4.2).

The initial active-but-terminating period SHOULD be sufficiently long to absorb latency incurred by route propagation. The active-but- terminating period SHOULD be set by default to 120 seconds. If the client requests mitigation again before the initial active-but- terminating period elapses, the DOTS server MAY exponentially increase (the base of the exponent is 2) the active-but-terminating period up to a maximum of 300 seconds (5 minutes).

Once the active-but-terminating period elapses, the DOTS server MUST treat the mitigation as terminated, as the DOTS client is no longer responsible for the mitigation.

If a mitigation is triggered due to a signal channel loss, the DOTS server relies upon normal triggers to stop that mitigation (typically, receipt of a valid DELETE request, expiry of the mitigation lifetime, or scrubbing the traffic to the attack target). In particular, the DOTS server MUST NOT consider the signal channel recovery as a trigger to stop the mitigation.

DOTS Signal Channel Session Configuration

A DOTS client can negotiate, configure, and retrieve the DOTS signal channel session behavior with its DOTS peers. The DOTS signal channel can be used, for example, to configure the following:

a. Heartbeat interval (heartbeat-interval): DOTS agents regularly

   send heartbeats to each other after mutual authentication is
   successfully completed in order to keep the DOTS signal channel
   open.  Heartbeat messages are exchanged between DOTS agents every
   'heartbeat-interval' seconds to detect the current status of the
   DOTS signal channel session.

b. Missing heartbeats allowed (missing-hb-allowed): This variable

   indicates the maximum number of consecutive heartbeat messages
   for which a DOTS agent did not receive a response before
   concluding that the session is disconnected or defunct.

c. Acceptable probing rate (probing-rate): This parameter indicates

   the average data rate that must not be exceeded by a DOTS agent
   in sending to a peer DOTS agent that does not respond.

d. Acceptable signal loss ratio: Maximum retransmissions,

   retransmission timeout value, and other message transmission
   parameters for Confirmable messages over the DOTS signal channel.

When the DOTS signal channel is established over a reliable transport (e.g., TCP), there is no need for the reliability mechanisms provided by CoAP over UDP since the underlying TCP connection provides retransmissions and deduplication RFC8323. As a reminder, CoAP over reliable transports does not support Confirmable or Non- confirmable message types. As such, the transmission-related parameters ('missing-hb-allowed' and acceptable signal loss ratio) are negotiated only for DOTS over unreliable transports.

The same or distinct configuration sets may be used during times when a mitigation is active ('mitigating-config') and when no mitigation is active ('idle-config'). This is particularly useful for DOTS servers that might want to reduce heartbeat frequency or cease heartbeat exchanges when an active DOTS client has not requested mitigation. If distinct configurations are used, DOTS agents MUST follow the appropriate configuration set as a function of the mitigation activity (e.g., if no mitigation request is active (also referred to as 'idle' time), values related to 'idle-config' must be followed). Additionally, DOTS agents MUST automatically switch to the other configuration upon a change in the mitigation activity (e.g., if an attack mitigation is launched after an 'idle' time, the DOTS agent switches from values related to 'idle-config' to values related to 'mitigating-config').

CoAP requests and responses are indicated for reliable delivery by marking them as Confirmable messages. DOTS signal channel session configuration requests and responses are marked as Confirmable messages. As explained in Section 2.1 of RFC7252, a Confirmable message is retransmitted using a default timeout and exponential backoff between retransmissions, until the DOTS server sends an Acknowledgement message (ACK) with the same Message ID conveyed from the DOTS client.

Message transmission parameters are defined in Section 4.8 of RFC7252. The DOTS server can either piggyback the response in the Acknowledgement message or, if the DOTS server cannot respond immediately to a request carried in a Confirmable message, it simply responds with an Empty Acknowledgement message so that the DOTS client can stop retransmitting the request. Empty Acknowledgement messages are explained in Section 2.2 of RFC7252. When the response is ready, the server sends it in a new Confirmable message, which, in turn, needs to be acknowledged by the DOTS client (see Sections 5.2.1 and 5.2.2 of RFC7252). Requests and responses exchanged between DOTS agents during 'idle' time, except heartbeat messages, are marked as Confirmable messages.

  |  Implementation Note: A DOTS client that receives a response in
  |  a Confirmable message may want to clean up the message state
  |  right after sending the ACK.  If that ACK is lost and the DOTS
  |  server retransmits the Confirmable message, the DOTS client may
  |  no longer have any state that would help it correlate this
  |  response: from the DOTS client's standpoint, the retransmission
  |  message is unexpected.  The DOTS client will send a Reset
  |  message so it does not receive any more retransmissions.  This
  |  behavior is normal and not an indication of an error (see
  |  Section 5.3.2 of RFC7252 for more details).

Discover Configuration Parameters

A GET request is used to obtain acceptable (e.g., minimum and maximum values) and current configuration parameters on the DOTS server for DOTS signal channel session configuration. This procedure occurs between a DOTS client and its immediate peer DOTS server. As such, this GET request MUST NOT be relayed by a DOTS gateway.

Figure 18 shows how to obtain configuration parameters that the DOTS server will find acceptable.

 Header: GET (Code=0.01)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "config"
              Figure 18: GET to Retrieve Configuration

The DOTS server in the 2.05 (Content) response conveys the current, minimum, and maximum attribute values acceptable by the DOTS server (Figure 19).

{

 "ietf-dots-signal-channel:signal-config": {
   "mitigating-config": {
     "heartbeat-interval": {
       "max-value": number,
       "min-value": number,
       "current-value": number
     },
     "missing-hb-allowed": {
       "max-value": number,
       "min-value": number,
       "current-value": number
     },
     "probing-rate": {
       "max-value": number,
       "min-value": number,
       "current-value": number
     },
     "max-retransmit": {
       "max-value": number,
       "min-value": number,
       "current-value": number
     },
     "ack-timeout": {
       "max-value-decimal": "string",
       "min-value-decimal": "string",
       "current-value-decimal": "string"
     },
     "ack-random-factor": {
       "max-value-decimal": "string",
       "min-value-decimal": "string",
       "current-value-decimal": "string"
     }
   },
   "idle-config": {
     "heartbeat-interval": {
       "max-value": number,
       "min-value": number,
       "current-value": number
     },
     "missing-hb-allowed": {
       "max-value": number,
       "min-value": number,
       "current-value": number
     },
     "probing-rate": {
       "max-value": number,
       "min-value": number,
       "current-value": number
     },
     "max-retransmit": {
       "max-value": number,
       "min-value": number,
       "current-value": number
     },
     "ack-timeout": {
       "max-value-decimal": "string",
       "min-value-decimal": "string",
       "current-value-decimal": "string"
     },
     "ack-random-factor": {
       "max-value-decimal": "string",
       "min-value-decimal": "string",
       "current-value-decimal": "string"
     }
   }
 }

}

         Figure 19: GET Configuration Response Body Schema

The parameters in Figure 19 are described below:

mitigating-config: Set of configuration parameters to use when a

  mitigation is active.  The following parameters may be included:
  heartbeat-interval:  Time interval in seconds between two
     consecutive heartbeat messages.
     '0' is used to disable the heartbeat mechanism.
     This is an optional attribute.
  missing-hb-allowed:  Maximum number of consecutive heartbeat
     messages for which the DOTS agent did not receive a response
     before concluding that the session is disconnected.
     This is an optional attribute.
  probing-rate:  The average data rate that must not be exceeded by
     a DOTS agent in sending to a peer DOTS agent that does not
     respond (referred to as PROBING_RATE parameter in CoAP).
     This is an optional attribute.
  max-retransmit:  Maximum number of retransmissions for a message
     (referred to as MAX_RETRANSMIT parameter in CoAP).
     This is an optional attribute.
  ack-timeout:  Timeout value in seconds used to calculate the
     initial retransmission timeout value (referred to as
     ACK_TIMEOUT parameter in CoAP).
     This is an optional attribute.
  ack-random-factor:  Random factor used to influence the timing of
     retransmissions (referred to as ACK_RANDOM_FACTOR parameter in
     CoAP).
     This is an optional attribute.

idle-config: Set of configuration parameters to use when no

  mitigation is active.  This attribute has the same structure as
  'mitigating-config'.

Figure 20 shows an example of acceptable and current configuration parameters on a DOTS server for DOTS signal channel session configuration. The same acceptable configuration is used during mitigation and idle times.

{

 "ietf-dots-signal-channel:signal-config": {
   "mitigating-config": {
     "heartbeat-interval": {
       "max-value": 240,
       "min-value": 15,
       "current-value": 30
     },
     "missing-hb-allowed": {
       "max-value": 20,
       "min-value": 3,
       "current-value": 15
     },
     "probing-rate": {
       "max-value": 20,
       "min-value": 5,
       "current-value": 15
     },
     "max-retransmit": {
       "max-value": 15,
       "min-value": 2,
       "current-value": 3
     },
     "ack-timeout": {
       "max-value-decimal": "30.00",
       "min-value-decimal": "1.00",
       "current-value-decimal": "2.00"
     },
     "ack-random-factor": {
       "max-value-decimal": "4.00",
       "min-value-decimal": "1.10",
       "current-value-decimal": "1.50"
     }
   },
   "idle-config": {
     "heartbeat-interval": {
       "max-value": 240,
       "min-value": 15,
       "current-value": 30
     },
     "missing-hb-allowed": {
       "max-value": 20,
       "min-value": 3,
       "current-value": 15
     },
     "probing-rate": {
       "max-value": 20,
       "min-value": 5,
       "current-value": 15
     },
     "max-retransmit": {
       "max-value": 15,
       "min-value": 2,
       "current-value": 3
     },
     "ack-timeout": {
       "max-value-decimal": "30.00",
       "min-value-decimal": "1.00",
       "current-value-decimal": "2.00"
     },
     "ack-random-factor": {
       "max-value-decimal": "4.00",
       "min-value-decimal": "1.10",
       "current-value-decimal": "1.50"
     }
   }
 }

}

        Figure 20: Example of a Configuration Response Body

Convey DOTS Signal Channel Session Configuration

A PUT request (Figures 21 and 22) is used to convey the configuration parameters for the signal channel (e.g., heartbeat interval, maximum retransmissions). Message transmission parameters for CoAP are defined in Section 4.8 of RFC7252. The RECOMMENDED values of transmission parameter values are 'ack-timeout' (2 seconds), 'max- retransmit' (3), and 'ack-random-factor' (1.5). In addition to those parameters, the RECOMMENDED specific DOTS transmission parameter values are 'heartbeat-interval' (30 seconds) and 'missing-hb-allowed' (15).

  |  Note: 'heartbeat-interval' should be tweaked to also assist
  |  DOTS messages for NAT traversal (SIG-011 of RFC8612).
  |  According to RFC8085, heartbeat messages must not be sent
  |  more frequently than once every 15 seconds and should use
  |  longer intervals when possible.  Furthermore, RFC4787
  |  recommends that NATs use a state timeout of 2 minutes or
  |  longer, but experience shows that sending packets every 15 to
  |  30 seconds is necessary to prevent the majority of middleboxes
  |  from losing state for UDP flows.  From that standpoint, the
  |  RECOMMENDED minimum 'heartbeat-interval' is 15 seconds and the
  |  RECOMMENDED maximum 'heartbeat-interval' is 240 seconds.  The
  |  recommended value of 30 seconds is selected to anticipate the
  |  expiry of NAT state.
  |  
  |  A 'heartbeat-interval' of 30 seconds may be considered to be
  |  too chatty in some deployments.  For such deployments, DOTS
  |  agents may negotiate longer 'heartbeat-interval' values to
  |  prevent any network overload with too frequent heartbeats.
  |  
  |  Different heartbeat intervals can be defined for 'mitigating-
  |  config' and 'idle-config' to reduce being too chatty during
  |  idle times.  If there is an on-path translator between the DOTS
  |  client (standalone or part of a DOTS gateway) and the DOTS
  |  server, the 'mitigating-config' 'heartbeat-interval' has to be
  |  smaller than the translator session timeout.  It is recommended
  |  that the 'idle-config' 'heartbeat-interval' also be smaller
  |  than the translator session timeout to prevent translator
  |  traversal issues or that it be disabled entirely.  Means to
  |  discover the lifetime assigned by a translator are out of
  |  scope.
  |  
  |  Given that the size of the heartbeat request cannot exceed
  |  ('heartbeat-interval' * 'probing-rate') bytes, 'probing-rate'
  |  should be set appropriately to avoid slowing down heartbeat
  |  exchanges.  For example, 'probing-rate' may be set to 2 *
  |  ("size of encrypted DOTS heartbeat request"/'heartbeat-
  |  interval') or (("size of encrypted DOTS heartbeat request" +
  |  "average size of an encrypted mitigation request")/'heartbeat-
  |  interval').  Absent any explicit configuration or inability to
  |  dynamically adjust 'probing-rate' values (Section 4.8.1 of
  |  RFC7252), DOTS agents use 5 bytes/second as a default
  |  'probing-rate' value.

If the DOTS agent wishes to change the default values of message transmission parameters, it SHOULD follow the guidance given in Section 4.8.1 of RFC7252. The DOTS agents MUST use the negotiated values for message transmission parameters and default values for non-negotiated message transmission parameters.

The signal channel session configuration is applicable to a single DOTS signal channel session between DOTS agents, so the 'cuid' Uri- Path MUST NOT be used.

 Header: PUT (Code=0.03)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "config"
 Uri-Path: "sid=123"
 Content-Format: "application/dots+cbor"
 {
  ...
 }
      Figure 21: PUT to Convey the DOTS Signal Channel Session
                         Configuration Data

The additional Uri-Path parameter to those defined in Table 1 is as follows:

sid: Session Identifier is an identifier for the DOTS signal channel

    session configuration data represented as an integer.  This
    identifier MUST be generated by DOTS clients.  'sid' values MUST
    increase monotonically (when a new PUT is generated by a DOTS
    client to convey the configuration parameters for the signal
    channel).
    This is a mandatory attribute.
 {
   "ietf-dots-signal-channel:signal-config": {
     "mitigating-config": {
       "heartbeat-interval": {
         "current-value": number
       },
       "missing-hb-allowed": {
         "current-value": number
       },
       "probing-rate": {
         "current-value": number
       },
       "max-retransmit": {
         "current-value": number
       },
       "ack-timeout": {
         "current-value-decimal": "string"
       },
       "ack-random-factor": {
         "current-value-decimal": "string"
       }
     },
     "idle-config": {
       "heartbeat-interval": {
         "current-value": number
       },
       "missing-hb-allowed": {
         "current-value": number
       },
       "probing-rate": {
         "current-value": number
       },
       "max-retransmit": {
         "current-value": number
       },
       "ack-timeout": {
         "current-value-decimal": "string"
       },
       "ack-random-factor": {
         "current-value-decimal": "string"
       }
     }
   }
 }
      Figure 22: PUT to Convey the DOTS Signal Channel Session
              Configuration Data (Message Body Schema)

The meaning of the parameters in the CBOR body (Figure 22) is defined in Section 4.5.1.

At least one of the attributes 'heartbeat-interval', 'missing-hb- allowed', 'probing-rate', 'max-retransmit', 'ack-timeout', and 'ack- random-factor' MUST be present in the PUT request. Note that 'heartbeat-interval', 'missing-hb-allowed', 'probing-rate', 'max- retransmit', 'ack-timeout', and 'ack-random-factor', if present, do not need to be provided for both 'mitigating-config', and 'idle- config' in a PUT request.

The PUT request with a higher numeric 'sid' value overrides the DOTS signal channel session configuration data installed by a PUT request with a lower numeric 'sid' value. To avoid maintaining a long list of 'sid' requests from a DOTS client, the lower numeric 'sid' MUST be automatically deleted and no longer available at the DOTS server.

Figure 23 shows a PUT request example to convey the configuration parameters for the DOTS signal channel. In this example, the heartbeat mechanism is disabled when no mitigation is active, while the heartbeat interval is set to '30' when a mitigation is active.

 Header: PUT (Code=0.03)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "config"
 Uri-Path: "sid=123"
 Content-Format: "application/dots+cbor"
 {
   "ietf-dots-signal-channel:signal-config": {
     "mitigating-config": {
       "heartbeat-interval": {
         "current-value": 30
       },
       "missing-hb-allowed": {
         "current-value": 15
       },
       "probing-rate": {
         "current-value": 15
       },
       "max-retransmit": {
         "current-value": 3
       },
       "ack-timeout": {
         "current-value-decimal": "2.00"
       },
       "ack-random-factor": {
         "current-value-decimal": "1.50"
       }
     },
     "idle-config": {
       "heartbeat-interval": {
         "current-value": 0
       },
       "max-retransmit": {
         "current-value": 3
       },
       "ack-timeout": {
         "current-value-decimal": "2.00"
       },
       "ack-random-factor": {
         "current-value-decimal": "1.50"
       }
     }
   }
 }
       Figure 23: PUT to Convey the Configuration Parameters

The DOTS server indicates the result of processing the PUT request using CoAP Response Codes:

  • If the request is missing a mandatory attribute, does not include
  a 'sid' Uri-Path, or contains one or more invalid or unknown
  parameters, 4.00 (Bad Request) MUST be returned in the response.
  • If the DOTS server does not find the 'sid' parameter value
  conveyed in the PUT request in its configuration data and if the
  DOTS server has accepted the configuration parameters, then a
  Response Code 2.01 (Created) MUST be returned in the response.
  • If the DOTS server finds the 'sid' parameter value conveyed in the
  PUT request in its configuration data and if the DOTS server has
  accepted the updated configuration parameters, 2.04 (Changed) MUST
  be returned in the response.
  • If any of the 'heartbeat-interval', 'missing-hb-allowed',
  'probing-rate', 'max-retransmit', 'target-protocol', 'ack-
  timeout', and 'ack-random-factor' attribute values are not
  acceptable to the DOTS server, 4.22 (Unprocessable Entity) MUST be
  returned in the response.  Upon receipt of this error code, the
  DOTS client SHOULD retrieve the maximum and minimum attribute
  values acceptable to the DOTS server (Section 4.5.1).
  The DOTS client may retry and send the PUT request with updated
  attribute values acceptable to the DOTS server.

A DOTS client may issue a GET message with a 'sid' Uri-Path parameter to retrieve the negotiated configuration. The response does not need to include 'sid' in its message body.

Configuration Freshness and Notifications

Max-Age Option (Section 5.10.5 of RFC7252) SHOULD be returned by a DOTS server to associate a validity time with a configuration it sends. This feature allows the update of the configuration data if a change occurs at the DOTS server side. For example, the new configuration may instruct a DOTS client to cease heartbeats or reduce heartbeat frequency.

It is NOT RECOMMENDED to return a Max-Age Option set to 0.

Returning a Max-Age Option set to 2^(32)-1 is equivalent to associating an infinite lifetime with the configuration.

If a non-zero value of Max-Age Option is received by a DOTS client, it MUST issue a GET request with a 'sid' Uri-Path parameter to retrieve the current and acceptable configuration before the expiry of the value enclosed in the Max-Age Option. This request is considered by the client and the server to be a means to refresh the configuration parameters for the signal channel. When a DDoS attack is active, refresh requests MUST NOT be sent by DOTS clients, and the DOTS server MUST NOT terminate the (D)TLS session after the expiry of the value returned in Max-Age Option.

If Max-Age Option is not returned in a response, the DOTS client initiates GET requests to refresh the configuration parameters each 60 seconds (Section 5.10.5 of RFC7252). To prevent such overload, it is RECOMMENDED that DOTS servers return a Max-Age Option in GET responses. Considerations related to which value to use and how such a value is set are implementation and deployment specific.

If an Observe Option set to 0 is included in the configuration request, the DOTS server sends notifications of any configuration change (Section 4.2 of RFC7641).

If a DOTS server detects that a misbehaving DOTS client does not contact the DOTS server after the expiry of Max-Age to retrieve the signal channel configuration data, it MAY terminate the (D)TLS session. A (D)TLS session is terminated by the receipt of an authenticated message that closes the connection (e.g., a fatal alert (Section 6 of RFC8446)).

Delete DOTS Signal Channel Session Configuration

A DELETE request is used to delete the installed DOTS signal channel session configuration data (Figure 24).

 Header: DELETE (Code=0.04)
 Uri-Path: ".well-known"
 Uri-Path: "dots"
 Uri-Path: "config"
 Uri-Path: "sid=123"
                  Figure 24: Delete Configuration

The DOTS server resets the DOTS signal channel session configuration back to the default values and acknowledges a DOTS client's request to remove the DOTS signal channel session configuration using 2.02 (Deleted) Response Code.

Upon bootstrapping or reboot, a DOTS client MAY send a DELETE request to set the configuration parameters to default values. Such a request does not include any 'sid'.

Redirected Signaling

Redirected DOTS signaling is discussed in detail in Section 3.2.2 of [DOTS-ARCH].

If a DOTS server wants to redirect a DOTS client to an alternative DOTS server for a signal session, then the Response Code 5.03 (Service Unavailable) will be returned in the response to the DOTS client.

The DOTS server can return the error Response Code 5.03 in response to a request from the DOTS client or convey the error Response Code 5.03 in a unidirectional notification response from the DOTS server.

The DOTS server in the error response conveys the alternate DOTS server's FQDN, and the alternate DOTS server's IP address(es) values in the CBOR body (Figure 25).

{

 "ietf-dots-signal-channel:redirected-signal": {
   "alt-server": "string",
   "alt-server-record": [
      "string"
   ]
 }

}

      Figure 25: Redirected Server Error Response Body Schema

The parameters are described below:

alt-server: FQDN of an alternate DOTS server.

  This is a mandatory attribute.

alt-server-record: A list of IP addresses of an alternate DOTS

  server.
  This is an optional attribute.

The DOTS server returns the Time to Live (TTL) of the alternate DOTS server in a Max-Age Option. That is, the time interval that the alternate DOTS server may be cached for use by a DOTS client. A Max- Age Option set to 2^(32)-1 is equivalent to receiving an infinite TTL. This value means that the alternate DOTS server is to be used until the alternate DOTS server redirects the traffic with another 5.03 response that conveys an alternate server's FQDN.

A Max-Age Option set to '0' may be returned for redirecting mitigation requests. Such a value means that the redirection applies only for the mitigation request in progress. Returning short TTL in a Max-Age Option may adversely impact DOTS clients on slow links. Returning short values should be avoided under such conditions.

If the alternate DOTS server TTL has expired, the DOTS client MUST use the DOTS server(s) that was provisioned using means discussed in Section 4.1. This fallback mechanism is triggered immediately upon expiry of the TTL, except when a DDoS attack is active.

Requests issued by misbehaving DOTS clients that do not honor the TTL conveyed in the Max-Age Option or react to explicit redirect messages can be rejected by DOTS servers.

Figure 26 shows a 5.03 response example to convey the DOTS alternate server 'alt-server.example' together with its IP addresses 2001:db8:6401::1 and 2001:db8:6401::2.

{

 "ietf-dots-signal-channel:redirected-signal": {
   "alt-server": "alt-server.example",
   "alt-server-record": [
      "2001:db8:6401::1",
      "2001:db8:6401::2"
   ]
 }

}

    Figure 26: Example of Redirected Server Error Response Body

When the DOTS client receives a 5.03 response with an alternate server included, it considers the current request to have failed, but it SHOULD try resending the request to the alternate DOTS server. During a DDoS attack, the DNS server may be the target of another DDoS attack, the alternate DOTS server's IP addresses conveyed in the 5.03 response help the DOTS client skip the DNS lookup of the alternate DOTS server, at the cost of trusting the first DOTS server to provide accurate information. The DOTS client can then try to establish a UDP or a TCP session with the alternate DOTS server. The DOTS client MAY implement a method to construct IPv4-embedded IPv6 addresses RFC6052; this is required to handle the scenario where an IPv6-only DOTS client communicates with an IPv4-only alternate DOTS server.

If the DOTS client has been redirected to a DOTS server with which it has already communicated within the last five (5) minutes, it MUST ignore the redirection and try to contact other DOTS servers listed in the local configuration or discovered using dynamic means such as DHCP or SRV procedures [DOTS-SERVER-DISC]. It is RECOMMENDED that DOTS clients support the means to alert administrators about redirect loops.

Heartbeat Mechanism

To provide an indication of signal health and to distinguish an 'idle' signal channel from a 'disconnected' or 'defunct' session, the DOTS agent sends a heartbeat over the signal channel to maintain its half of the channel (also, aligned with the "consents" recommendation in Section 6 of RFC8085). The DOTS agent similarly expects a heartbeat from its peer DOTS agent, and it may consider a session terminated in the prolonged absence of a peer agent heartbeat. Concretely, while the communication between the DOTS agents is otherwise quiescent, the DOTS client will probe the DOTS server to ensure it has maintained cryptographic state and vice versa. Such probes can also keep the bindings of firewalls and/or stateful translators alive. This probing reduces the frequency of establishing a new handshake when a DOTS signal needs to be conveyed to the DOTS server.

  |  Implementation Note: Given that CoAP roles can be multiplexed
  |  over the same session as discussed in RFC7252 and are already
  |  supported by CoAP implementations, both the DOTS client and
  |  server can send DOTS heartbeat requests.

The DOTS heartbeat mechanism uses Non-confirmable PUT requests (Figure 27) with an expected 2.04 (Changed) Response Code (Figure 28). This procedure occurs between a DOTS agent and its immediate peer DOTS agent. As such, this PUT request MUST NOT be relayed by a DOTS gateway. The PUT request used for DOTS heartbeat MUST NOT have a 'cuid', 'cdid', or 'mid' Uri-Path.

    Header: PUT (Code=0.03)
    Uri-Path: ".well-known"
    Uri-Path: "dots"
    Uri-Path: "hb"
    Content-Format: "application/dots+cbor"
    {
      "ietf-dots-signal-channel:heartbeat": {
         "peer-hb-status": true
       }
    }
       Figure 27: PUT to Check Peer DOTS Agent Is Responding

The mandatory 'peer-hb-status' attribute is set to 'true' (or 'false') to indicate that a DOTS agent is (or is not) receiving heartbeat messages from its peer in the last (2 * 'heartbeat- interval') period. Such information can be used by a peer DOTS agent to detect or confirm connectivity issues and react accordingly. For example, if a DOTS client receives a 2.04 response for its heartbeat messages but no server-initiated heartbeat messages, the DOTS client sets 'peer-hb-status' to 'false'. The DOTS server then will need to try another strategy for sending the heartbeats (e.g., adjust the heartbeat interval or send a server-initiated heartbeat immediately after receiving a client-initiated heartbeat message).

    Header: (Code=2.04)
          Figure 28: Response to a DOTS Heartbeat Request

DOTS servers MAY trigger their heartbeat requests immediately after receiving heartbeat probes from peer DOTS clients. As a reminder, it is the responsibility of DOTS clients to ensure that on-path translators/firewalls are maintaining a binding so that the same external IP address and/or port number is retained for the DOTS signal channel session.

Under normal traffic conditions (i.e., no attack is ongoing), if a DOTS agent does not receive any response from the peer DOTS agent for 'missing-hb-allowed' number of consecutive heartbeat messages, it concludes that the DOTS signal channel session is disconnected. The DOTS client MUST then try to reestablish the DOTS signal channel session, preferably by resuming the (D)TLS session.

  |  Note: If a new DOTS signal channel session cannot be
  |  established, the DOTS client SHOULD NOT retry to establish the
  |  DOTS signal channel session more frequently than every 300
  |  seconds (5 minutes) and MUST NOT retry more frequently than
  |  every 60 seconds (1 minute).  It is recommended that DOTS
  |  clients support the means to alert administrators about the
  |  failure to establish a (D)TLS session.

In case of a massive DDoS attack that saturates the incoming link(s) to the DOTS client, all traffic from the DOTS server to the DOTS client will likely be dropped, although the DOTS server receives heartbeat requests in addition to DOTS messages sent by the DOTS client. In this scenario, DOTS clients MUST behave differently to handle message transmission and DOTS signal channel session liveliness during link saturation:

  The DOTS client MUST NOT consider the DOTS signal channel session
  terminated even after a maximum 'missing-hb-allowed' threshold is
  reached.  The DOTS client SHOULD keep on using the current DOTS
  signal channel session to send heartbeat requests over it, so that
  the DOTS server knows the DOTS client has not disconnected the
  DOTS signal channel session.
  After the maximum 'missing-hb-allowed' threshold is reached, the
  DOTS client SHOULD try to establish a new DOTS signal channel
  session.  The DOTS client SHOULD send mitigation requests over the
  current DOTS signal channel session and, in parallel, send the
  mitigation requests over the new DOTS signal channel session.
  This may be handled, for example, by resumption of the (D)TLS
  session or using 0-RTT mode in DTLS 1.3 to piggyback the
  mitigation request in the ClientHello message.
  As soon as the link is no longer saturated, if traffic from the
  DOTS server reaches the DOTS client over the current DOTS signal
  channel session, the DOTS client can stop the new DOTS signal
  channel session attempt or if a new DOTS signal channel session is
  successful then disconnect the current DOTS signal channel
  session.

If the DOTS server receives traffic from the peer DOTS client (e.g., peer DOTS client-initiated heartbeats) but the maximum 'missing-hb- allowed' threshold is reached, the DOTS server MUST NOT consider the DOTS signal channel session disconnected. The DOTS server MUST keep on using the current DOTS signal channel session so that the DOTS client can send mitigation requests over the current DOTS signal channel session. In this case, the DOTS server can identify that the DOTS client is under attack and that the inbound link to the DOTS client (domain) is saturated. Furthermore, if the DOTS server does not receive a mitigation request from the DOTS client, it implies that the DOTS client has not detected the attack or, if an attack mitigation is in progress, it implies that the applied DDoS mitigation actions are not yet effectively handling the DDoS attack volume.

If the DOTS server does not receive any traffic from the peer DOTS client during the time span required to exhaust the maximum 'missing- hb-allowed' threshold, the DOTS server concludes the session is disconnected. The DOTS server can then trigger preconfigured mitigation requests for this DOTS client (if any).

In DOTS over TCP, the sender of a DOTS heartbeat message has to allow up to 'heartbeat-interval' seconds when waiting for a heartbeat reply. When a failure is detected by a DOTS client, it proceeds with the session recovery, following the same approach as the one used for unreliable transports.

DOTS Signal Channel YANG Modules

This document defines a YANG module RFC7950 for DOTS mitigation scope, DOTS signal channel session configuration data, DOTS redirection signaling, and DOTS heartbeats.

This YANG module (ietf-dots-signal-channel) defines the DOTS client interaction with the DOTS server as seen by the DOTS client. A DOTS server is allowed to update the non-configurable 'ro' entities in the responses. This YANG module is not intended to be used via NETCONF/ RESTCONF for DOTS server management purposes; such a module is out of the scope of this document. It serves only to provide a data model and encoding, but not a management data model.

A companion YANG module is defined to include a collection of types defined by IANA: "iana-dots-signal-channel" (Section 5.2).

Tree Structure

This document defines the YANG module "ietf-dots-signal-channel" (Section 5.3), which has the following tree structure. A DOTS signal message can be a mitigation, a configuration, a redirect, or a heartbeat message.

module: ietf-dots-signal-channel

 +--rw dots-signal
    +--rw (message-type)?
       +--:(mitigation-scope)
       |  +--rw scope* [cuid mid]
       |     +--rw cdid?                   string
       |     +--rw cuid                    string
       |     +--rw mid                     uint32
       |     +--rw target-prefix*          inet:ip-prefix
       |     +--rw target-port-range*      [lower-port]
       |     |  +--rw lower-port    inet:port-number
       |     |  +--rw upper-port?   inet:port-number
       |     +--rw target-protocol*        uint8
       |     +--rw target-fqdn*            inet:domain-name
       |     +--rw target-uri*             inet:uri
       |     +--rw alias-name*             string
       |     +--rw lifetime?               int32
       |     +--rw trigger-mitigation?     boolean
       |     +--ro mitigation-start?       uint64
       |     +--ro status?                 iana-signal:status
       |     +--ro conflict-information
       |     |  +--ro conflict-status?   iana-signal:conflict-status
       |     |  +--ro conflict-cause?    iana-signal:conflict-cause
       |     |  +--ro retry-timer?       uint32
       |     |  +--ro conflict-scope
       |     |     +--ro target-prefix*       inet:ip-prefix
       |     |     +--ro target-port-range*   [lower-port]
       |     |     |  +--ro lower-port      inet:port-number
       |     |     |  +--ro upper-port?     inet:port-number
       |     |     +--ro target-protocol*     uint8
       |     |     +--ro target-fqdn*         inet:domain-name
       |     |     +--ro target-uri*          inet:uri
       |     |     +--ro alias-name*          string
       |     |     +--ro acl-list* [acl-name]
       |     |     |  +--ro acl-name
       |     |     |  |   -> /ietf-data:dots-data/dots-client/acls/
       |     |     |  |      acl/name
       |     |     |  +--ro acl-type?
       |     |     |      -> /ietf-data:dots-data/dots-client/acls/
       |     |     |         acl/type
       |     |     +--ro mid?                 -> ../../../mid
       |     +--ro bytes-dropped?          yang:zero-based-counter64
       |     +--ro bps-dropped?            yang:gauge64
       |     +--ro pkts-dropped?           yang:zero-based-counter64
       |     +--ro pps-dropped?            yang:gauge64
       |     +--rw attack-status?          iana-signal:attack-status
       +--:(signal-config)
       |  +--rw sid                   uint32
       |  +--rw mitigating-config
       |  |  +--rw heartbeat-interval
       |  |  |  +--ro max-value?       uint16
       |  |  |  +--ro min-value?       uint16
       |  |  |  +--rw current-value?   uint16
       |  |  +--rw missing-hb-allowed
       |  |  |  +--ro max-value?       uint16
       |  |  |  +--ro min-value?       uint16
       |  |  |  +--rw current-value?   uint16
       |  |  +--rw probing-rate
       |  |  |  +--ro max-value?       uint16
       |  |  |  +--ro min-value?       uint16
       |  |  |  +--rw current-value?   uint16
       |  |  +--rw max-retransmit
       |  |  |  +--ro max-value?       uint16
       |  |  |  +--ro min-value?       uint16
       |  |  |  +--rw current-value?   uint16
       |  |  +--rw ack-timeout
       |  |  |  +--ro max-value-decimal?       decimal64
       |  |  |  +--ro min-value-decimal?       decimal64
       |  |  |  +--rw current-value-decimal?   decimal64
       |  |  +--rw ack-random-factor
       |  |     +--ro max-value-decimal?       decimal64
       |  |     +--ro min-value-decimal?       decimal64
       |  |     +--rw current-value-decimal?   decimal64
       |  +--rw idle-config
       |     +--rw heartbeat-interval
       |     |  +--ro max-value?       uint16
       |     |  +--ro min-value?       uint16
       |     |  +--rw current-value?   uint16
       |     +--rw missing-hb-allowed
       |     |  +--ro max-value?       uint16
       |     |  +--ro min-value?       uint16
       |     |  +--rw current-value?   uint16
       |     +--rw probing-rate
       |     |  +--ro max-value?       uint16
       |     |  +--ro min-value?       uint16
       |     |  +--rw current-value?   uint16
       |     +--rw max-retransmit
       |     |  +--ro max-value?       uint16
       |     |  +--ro min-value?       uint16
       |     |  +--rw current-value?   uint16
       |     +--rw ack-timeout
       |     |  +--ro max-value-decimal?       decimal64
       |     |  +--ro min-value-decimal?       decimal64
       |     |  +--rw current-value-decimal?   decimal64
       |     +--rw ack-random-factor
       |        +--ro max-value-decimal?       decimal64
       |        +--ro min-value-decimal?       decimal64
       |        +--rw current-value-decimal?   decimal64
       +--:(redirected-signal)
       |  +--ro alt-server            string
       |  +--ro alt-server-record*    inet:ip-address
       +--:(heartbeat)
          +--rw peer-hb-status              boolean

IANA DOTS Signal Channel YANG Module

file "[email protected]" module iana-dots-signal-channel {

 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:iana-dots-signal-channel";
 prefix iana-signal;
 organization
   "IANA";
 contact
   "Internet Assigned Numbers Authority
    Postal: ICANN
         12025 Waterfront Drive, Suite 300
         Los Angeles, CA  90094-2536
         United States of America
    Tel:    +1 310 301 5800
    <mailto:[email protected]>";
 description
   "This module contains a collection of YANG data types defined
    by IANA and used for DOTS signal channel protocol.
    Copyright (c) 2020 IETF Trust and the persons identified as
    authors of the code.  All rights reserved.
    Redistribution and use in source and binary forms, with or
    without modification, is permitted pursuant to, and subject
    to the license terms contained in, the Simplified BSD License
    set forth in Section 4.c of the IETF Trust's Legal Provisions
    Relating to IETF Documents
    (http://trustee.ietf.org/license-info).
    This version of this YANG module is part of RFC 8782; see
    the RFC itself for full legal notices.";
 revision 2020-05-28 {
   description
     "Initial revision.";
   reference
     "RFC 8782: Distributed Denial-of-Service Open Threat
                Signaling (DOTS) Signal Channel Specification";
 }
 typedef status {
   type enumeration {
     enum attack-mitigation-in-progress {
       value 1;
       description
         "Attack mitigation setup is in progress (e.g., changing
          the network path to reroute the inbound traffic
          to DOTS mitigator).";
     }
     enum attack-successfully-mitigated {
       value 2;
       description
         "Attack is being successfully mitigated (e.g., traffic
          is redirected to a DDoS mitigator and attack
          traffic is dropped or blackholed).";
     }
     enum attack-stopped {
       value 3;
       description
         "Attack has stopped and the DOTS client can
          withdraw the mitigation request.";
     }
     enum attack-exceeded-capability {
       value 4;
       description
         "Attack has exceeded the mitigation provider
          capability.";
     }
     enum dots-client-withdrawn-mitigation {
       value 5;
       description
         "DOTS client has withdrawn the mitigation
          request and the mitigation is active but
          terminating.";
     }
     enum attack-mitigation-terminated {
       value 6;
       description
         "Attack mitigation is now terminated.";
     }
     enum attack-mitigation-withdrawn {
       value 7;
       description
         "Attack mitigation is withdrawn.";
     }
     enum attack-mitigation-signal-loss {
       value 8;
       description
         "Attack mitigation will be triggered
          for the mitigation request only when
          the DOTS signal channel session is lost.";
     }
   }
   description
     "Enumeration for status reported by the DOTS server.";
 }
 typedef conflict-status {
   type enumeration {
     enum request-inactive-other-active {
       value 1;
       description
         "DOTS Server has detected conflicting mitigation
          requests from different DOTS clients.
          This mitigation request is currently inactive
          until the conflicts are resolved. Another
          mitigation request is active.";
     }
     enum request-active {
       value 2;
       description
         "DOTS Server has detected conflicting mitigation
          requests from different DOTS clients.
          This mitigation request is currently active.";
     }
     enum all-requests-inactive {
       value 3;
       description
         "DOTS Server has detected conflicting mitigation
          requests from different DOTS clients.  All
          conflicting mitigation requests are inactive.";
     }
   }
   description
     "Enumeration for conflict status.";
 }
 typedef conflict-cause {
   type enumeration {
     enum overlapping-targets {
       value 1;
       description
         "Overlapping targets. conflict-scope provides
          more details about the exact conflict.";
     }
     enum conflict-with-acceptlist {
       value 2;
       description
         "Conflicts with an existing accept-list.
          This code is returned when the DDoS mitigation
          detects that some of the source addresses/prefixes
          listed in the accept-list ACLs are actually
          attacking the target.";
     }
     enum cuid-collision {
       value 3;
       description
         "Conflicts with the cuid used by another
          DOTS client.";
     }
   }
   description
     "Enumeration for conflict causes.";
 }
 typedef attack-status {
   type enumeration {
     enum under-attack {
       value 1;
       description
         "The DOTS client determines that it is still under
          attack.";
     }
     enum attack-successfully-mitigated {
       value 2;
       description
         "The DOTS client determines that the attack is
          successfully mitigated.";
     }
   }
   description
     "Enumeration for attack status codes.";
 }

}

IETF DOTS Signal Channel YANG Module

This module uses the common YANG types defined in RFC6991 and types defined in RFC8783.

file "[email protected]" module ietf-dots-signal-channel {

 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-dots-signal-channel";
 prefix signal;
 import ietf-inet-types {
   prefix inet;
   reference
     "Section 4 of RFC 6991";
 }
 import ietf-yang-types {
   prefix yang;
   reference
     "Section 3 of RFC 6991";
 }
 import ietf-dots-data-channel {
   prefix ietf-data;
   reference
     "RFC 8783: Distributed Denial-of-Service Open Threat Signaling
                (DOTS) Data Channel Specification";
 }
 import iana-dots-signal-channel {
   prefix iana-signal;
 }
 organization
   "IETF DDoS Open Threat Signaling (DOTS) Working Group";
 contact
   "WG Web:   <https://datatracker.ietf.org/wg/dots/>
    WG List:  <mailto:[email protected]>
    Editor:  Konda, Tirumaleswar Reddy.K
             <mailto:[email protected]>
    Editor:  Mohamed Boucadair
             <mailto:[email protected]>
    Author:  Prashanth Patil
             <mailto:[email protected]>
    Author:  Andrew Mortensen
             <mailto:[email protected]>
    Author:  Nik Teague
             <mailto:[email protected]>";
 description
   "This module contains YANG definition for the signaling
    messages exchanged between a DOTS client and a DOTS server.
    Copyright (c) 2020 IETF Trust and the persons identified as
    authors of the code.  All rights reserved.
    Redistribution and use in source and binary forms, with or
    without modification, is permitted pursuant to, and subject
    to the license terms contained in, the Simplified BSD License
    set forth in Section 4.c of the IETF Trust's Legal Provisions
    Relating to IETF Documents
    (http://trustee.ietf.org/license-info).
    This version of this YANG module is part of RFC 8782; see
    the RFC itself for full legal notices.";
 revision 2020-05-28 {
   description
     "Initial revision.";
   reference
     "RFC 8782: Distributed Denial-of-Service Open Threat
                Signaling (DOTS) Signal Channel Specification";
 }
 /*
  * Groupings
  */
 grouping mitigation-scope {
   description
     "Specifies the scope of the mitigation request.";
   list scope {
     key "cuid mid";
     description
       "The scope of the request.";
     leaf cdid {
       type string;
       description
         "The cdid should be included by a server-domain
          DOTS gateway to propagate the client domain
          identification information from the
          gateway's client-facing side to the gateway's
          server-facing side, and from the gateway's
          server-facing side to the DOTS server.
          It may be used by the final DOTS server
          for policy enforcement purposes.";
     }
     leaf cuid {
       type string;
       description
         "A unique identifier that is
          generated by a DOTS client to prevent
          request collisions.  It is expected that the
          cuid will remain consistent throughout the
          lifetime of the DOTS client.";
     }
     leaf mid {
       type uint32;
       description
         "Mitigation request identifier.
          This identifier must be unique for each mitigation
          request bound to the DOTS client.";
     }
     uses ietf-data:target;
     leaf-list alias-name {
       type string;
       description
         "An alias name that points to a resource.";
     }
     leaf lifetime {
       type int32;
       units "seconds";
       default "3600";
       description
         "Indicates the lifetime of the mitigation request.
          A lifetime of '0' in a mitigation request is an
          invalid value.
          A lifetime of negative one (-1) indicates indefinite
          lifetime for the mitigation request.";
     }
     leaf trigger-mitigation {
       type boolean;
       default "true";
       description
         "If set to 'false', DDoS mitigation will not be
          triggered unless the DOTS signal channel
          session is lost.";
     }
     leaf mitigation-start {
       type uint64;
       config false;
       description
         "Mitigation start time is represented in seconds
          relative to 1970-01-01T00:00:00Z in UTC time.";
     }
     leaf status {
       type iana-signal:status;
       config false;
       description
         "Indicates the status of a mitigation request.
          It must be included in responses only.";
     }
     container conflict-information {
       config false;
       description
         "Indicates that a conflict is detected.
          Must only be used for responses.";
       leaf conflict-status {
         type iana-signal:conflict-status;
         description
           "Indicates the conflict status.";
       }
       leaf conflict-cause {
         type iana-signal:conflict-cause;
         description
           "Indicates the cause of the conflict.";
       }
       leaf retry-timer {
         type uint32;
         units "seconds";
         description
           "The DOTS client must not resend the
            same request that has a conflict before the expiry of
            this timer.";
       }
       container conflict-scope {
         description
           "Provides more information about the conflict scope.";
         uses ietf-data:target {
           when "/dots-signal/scope/conflict-information/"
              + "conflict-cause = 'overlapping-targets'";
         }
         leaf-list alias-name {
           when "../../conflict-cause = 'overlapping-targets'";
           type string;
           description
             "Conflicting alias-name.";
         }
         list acl-list {
           when "../../conflict-cause = 'conflict-with-acceptlist'";
           key "acl-name";
           description
             "List of conflicting ACLs as defined in the DOTS data
              channel.  These ACLs are uniquely defined by
              cuid and acl-name.";
           leaf acl-name {
             type leafref {
               path "/ietf-data:dots-data/ietf-data:dots-client/"
                  + "ietf-data:acls/ietf-data:acl/ietf-data:name";
             }
             description
               "Reference to the conflicting ACL name bound to
                a DOTS client.";
           }
           leaf acl-type {
             type leafref {
               path "/ietf-data:dots-data/ietf-data:dots-client/"
                  + "ietf-data:acls/ietf-data:acl/ietf-data:type";
             }
             description
               "Reference to the conflicting ACL type bound to
                a DOTS client.";
           }
         }
         leaf mid {
           when "../../conflict-cause = 'overlapping-targets'";
           type leafref {
             path "../../../mid";
           }
           description
             "Reference to the conflicting 'mid' bound to
              the same DOTS client.";
         }
       }
     }
     leaf bytes-dropped {
       type yang:zero-based-counter64;
       units "bytes";
       config false;
       description
         "The total dropped byte count for the mitigation
          request since the attack mitigation was triggered.
          The count wraps around when it reaches the maximum value
          of counter64 for dropped bytes.";
     }
     leaf bps-dropped {
       type yang:gauge64;
       config false;
       description
         "The average number of dropped bits per second for
          the mitigation request since the attack
          mitigation was triggered.  This should be over
          five-minute intervals (that is, measuring bytes
          into five-minute buckets and then averaging these
          buckets over the time since the mitigation was
          triggered).";
     }
     leaf pkts-dropped {
       type yang:zero-based-counter64;
       config false;
       description
         "The total number of dropped packet count for the
          mitigation request since the attack mitigation was
          triggered.  The count wraps around when it reaches
          the maximum value of counter64 for dropped packets.";
     }
     leaf pps-dropped {
       type yang:gauge64;
       config false;
       description
         "The average number of dropped packets per second
          for the mitigation request since the attack
          mitigation was triggered.  This should be over
          five-minute intervals (that is, measuring packets
          into five-minute buckets and then averaging these
          buckets over the time since the mitigation was
          triggered).";
     }
     leaf attack-status {
       type iana-signal:attack-status;
       description
         "Indicates the status of an attack as seen by the
          DOTS client.";
     }
   }
 }
 grouping config-parameters {
   description
     "Subset of DOTS signal channel session configuration.";
   container heartbeat-interval {
     description
       "DOTS agents regularly send heartbeats to each other
        after mutual authentication is successfully
        completed in order to keep the DOTS signal channel
        open.";
     leaf max-value {
       type uint16;
       units "seconds";
       config false;
       description
         "Maximum acceptable heartbeat-interval value.";
     }
     leaf min-value {
       type uint16;
       units "seconds";
       config false;
       description
         "Minimum acceptable heartbeat-interval value.";
     }
     leaf current-value {
       type uint16;
       units "seconds";
       default "30";
       description
         "Current heartbeat-interval value.
          '0' means that heartbeat mechanism is deactivated.";
     }
   }
   container missing-hb-allowed {
     description
       "Maximum number of missing heartbeats allowed.";
     leaf max-value {
       type uint16;
       config false;
       description
         "Maximum acceptable missing-hb-allowed value.";
     }
     leaf min-value {
       type uint16;
       config false;
       description
         "Minimum acceptable missing-hb-allowed value.";
     }
     leaf current-value {
       type uint16;
       default "15";
       description
         "Current missing-hb-allowed value.";
     }
   }
   container probing-rate {
     description
       "The limit for sending Non-confirmable messages with
        no response.";
     leaf max-value {
       type uint16;
       units "byte/second";
       config false;
       description
         "Maximum acceptable probing-rate value.";
     }
     leaf min-value {
       type uint16;
       units "byte/second";
       config false;
       description
         "Minimum acceptable probing-rate value.";
     }
     leaf current-value {
       type uint16;
       units "byte/second";
       default "5";
       description
         "Current probing-rate value.";
     }
   }
   container max-retransmit {
     description
       "Maximum number of retransmissions of a Confirmable
        message.";
     leaf max-value {
       type uint16;
       config false;
       description
         "Maximum acceptable max-retransmit value.";
     }
     leaf min-value {
       type uint16;
       config false;
       description
         "Minimum acceptable max-retransmit value.";
     }
     leaf current-value {
       type uint16;
       default "3";
       description
         "Current max-retransmit value.";
     }
   }
   container ack-timeout {
     description
       "Initial retransmission timeout value.";
     leaf max-value-decimal {
       type decimal64 {
         fraction-digits 2;
       }
       units "seconds";
       config false;
       description
         "Maximum ack-timeout value.";
     }
     leaf min-value-decimal {
       type decimal64 {
         fraction-digits 2;
       }
       units "seconds";
       config false;
       description
         "Minimum ack-timeout value.";
     }
     leaf current-value-decimal {
       type decimal64 {
         fraction-digits 2;
       }
       units "seconds";
       default "2";
       description
         "Current ack-timeout value.";
     }
   }
   container ack-random-factor {
     description
       "Random factor used to influence the timing of
        retransmissions.";
     leaf max-value-decimal {
       type decimal64 {
         fraction-digits 2;
       }
       config false;
       description
         "Maximum acceptable ack-random-factor value.";
     }
     leaf min-value-decimal {
       type decimal64 {
         fraction-digits 2;
       }
       config false;
       description
         "Minimum acceptable ack-random-factor value.";
     }
     leaf current-value-decimal {
       type decimal64 {
         fraction-digits 2;
       }
       default "1.5";
       description
         "Current ack-random-factor value.";
     }
   }
 }
 grouping signal-config {
   description
     "DOTS signal channel session configuration.";
   leaf sid {
     type uint32;
     mandatory true;
     description
       "An identifier for the DOTS signal channel
        session configuration data.";
   }
   container mitigating-config {
     description
       "Configuration parameters to use when a mitigation
        is active.";
     uses config-parameters;
   }
   container idle-config {
     description
       "Configuration parameters to use when no mitigation
        is active.";
     uses config-parameters;
   }
 }
 grouping redirected-signal {
   description
     "Grouping for the redirected signaling.";
   leaf alt-server {
     type string;
     config false;
     mandatory true;
     description
       "FQDN of an alternate server.";
   }
   leaf-list alt-server-record {
     type inet:ip-address;
     config false;
     description
       "List of records for the alternate server.";
   }
 }
 /*
  * Main Container for DOTS Signal Channel
  */
 container dots-signal {
   description
     "Main container for DOTS signal message.
      A DOTS signal message can be a mitigation, a configuration,
      or a redirected signal message.";
   choice message-type {
     description
       "Can be a mitigation, a configuration, or a redirect
        message.";
     case mitigation-scope {
       description
         "Mitigation scope of a mitigation message.";
       uses mitigation-scope;
     }
     case signal-config {
       description
         "Configuration message.";
       uses signal-config;
     }
     case redirected-signal {
       description
         "Redirected signaling.";
       uses redirected-signal;
     }
     case heartbeat {
       description
         "DOTS heartbeats.";
       leaf peer-hb-status {
         type boolean;
         mandatory true;
         description
           "Indicates whether a DOTS agent receives heartbeats
            from its peer.  The value is set to 'true' if the
            DOTS agent is receiving heartbeat messages
            from its peer.";
       }
     }
   }
 }

}

YANG/JSON Mapping Parameters to CBOR

All parameters in the payload of the DOTS signal channel MUST be mapped to CBOR types as shown in Table 5 and are assigned an integer key to save space.

  Note: Implementers must check that the mapping output provided by
  their YANG-to-CBOR encoding schemes is aligned with the content of
  Table 5.  For example, some CBOR and JSON types for enumerations
  and the 64-bit quantities can differ depending on the encoder
  used.

The CBOR key values are divided into two types: comprehension- required and comprehension-optional. DOTS agents can safely ignore comprehension-optional values they don't understand, but they cannot successfully process a request if it contains comprehension-required values that are not understood. The 4.00 response SHOULD include a diagnostic payload describing the unknown comprehension-required CBOR key values. The initial set of CBOR key values defined in this specification are of type comprehension-required.

+---------------------+--------------+------+-------------+--------+ | Parameter Name | YANG Type | CBOR | CBOR Major | JSON | | | | Key | Type & | Type | | | | | Information | | +=====================+==============+======+=============+========+ | ietf-dots-signal- | container | 1 | 5 map | Object | | channel:mitigation- | | | | | | scope | | | | | +---------------------+--------------+------+-------------+--------+ | scope | list | 2 | 4 array | Array | +---------------------+--------------+------+-------------+--------+ | cdid | string | 3 | 3 text | String | | | | | string | | +---------------------+--------------+------+-------------+--------+ | cuid | string | 4 | 3 text | String | | | | | string | | +---------------------+--------------+------+-------------+--------+ | mid | uint32 | 5 | 0 unsigned | Number | +---------------------+--------------+------+-------------+--------+ | target-prefix | leaf-list | 6 | 4 array | Array | | +--------------+------+-------------+--------+ | | inet:ip- | | 3 text | String | | | prefix | | string | | +---------------------+--------------+------+-------------+--------+ | target-port-range | list | 7 | 4 array | Array | +---------------------+--------------+------+-------------+--------+ | lower-port | inet:port- | 8 | 0 unsigned | Number | | | number | | | | +---------------------+--------------+------+-------------+--------+ | upper-port | inet:port- | 9 | 0 unsigned | Number | | | number | | | | +---------------------+--------------+------+-------------+--------+ | target-protocol | leaf-list | 10 | 4 array | Array | | +--------------+------+-------------+--------+ | | uint8 | | 0 unsigned | Number | +---------------------+--------------+------+-------------+--------+ | target-fqdn | leaf-list | 11 | 4 array | Array | | +--------------+------+-------------+--------+ | | inet:domain- | | 3 text | String | | | name | | string | | +---------------------+--------------+------+-------------+--------+ | target-uri | leaf-list | 12 | 4 array | Array | | +--------------+------+-------------+--------+ | | inet:uri | | 3 text | String | | | | | string | | +---------------------+--------------+------+-------------+--------+ | alias-name | leaf-list | 13 | 4 array | Array | | +--------------+------+-------------+--------+ | | string | | 3 text | String | | | | | string | | +---------------------+--------------+------+-------------+--------+ | lifetime | int32 | 14 | 0 unsigned | Number | | | | +-------------+--------+ | | | | 1 negative | Number | +---------------------+--------------+------+-------------+--------+ | mitigation-start | uint64 | 15 | 0 unsigned | String | +---------------------+--------------+------+-------------+--------+ | status | enumeration | 16 | 0 unsigned | String | +---------------------+--------------+------+-------------+--------+ | conflict- | container | 17 | 5 map | Object | | information | | | | | +---------------------+--------------+------+-------------+--------+ | conflict-status | enumeration | 18 | 0 unsigned | String | +---------------------+--------------+------+-------------+--------+ | conflict-cause | enumeration | 19 | 0 unsigned | String | +---------------------+--------------+------+-------------+--------+ | retry-timer | uint32 | 20 | 0 unsigned | String | +---------------------+--------------+------+-------------+--------+ | conflict-scope | container | 21 | 5 map | Object | +---------------------+--------------+------+-------------+--------+ | acl-list | list | 22 | 4 array | Array | +---------------------+--------------+------+-------------+--------+ | acl-name | leafref | 23 | 3 text | String | | | | | string | | +---------------------+--------------+------+-------------+--------+ | acl-type | leafref | 24 | 3 text | String | | | | | string | | +---------------------+--------------+------+-------------+--------+ | bytes-dropped | yang:zero- | 25 | 0 unsigned | String | | | based- | | | | | | counter64 | | | | +---------------------+--------------+------+-------------+--------+ | bps-dropped | yang:gauge64 | 26 | 0 unsigned | String | +---------------------+--------------+------+-------------+--------+ | pkts-dropped | yang:zero- | 27 | 0 unsigned | String | | | based- | | | | | | counter64 | | | | +---------------------+--------------+------+-------------+--------+ | pps-dropped | yang:gauge64 | 28 | 0 unsigned | String | +---------------------+--------------+------+-------------+--------+ | attack-status | enumeration | 29 | 0 unsigned | String | +---------------------+--------------+------+-------------+--------+ | ietf-dots-signal- | container | 30 | 5 map | Object | | channel:signal- | | | | | | config | | | | | +---------------------+--------------+------+-------------+--------+ | sid | uint32 | 31 | 0 unsigned | Number | +---------------------+--------------+------+-------------+--------+ | mitigating-config | container | 32 | 5 map | Object | +---------------------+--------------+------+-------------+--------+ | heartbeat-interval | container | 33 | 5 map | Object | +---------------------+--------------+------+-------------+--------+ | max-value | uint16 | 34 | 0 unsigned | Number | +---------------------+--------------+------+-------------+--------+ | min-value | uint16 | 35 | 0 unsigned | Number | +---------------------+--------------+------+-------------+--------+ | current-value | uint16 | 36 | 0 unsigned | Number | +---------------------+--------------+------+-------------+--------+ | missing-hb-allowed | container | 37 | 5 map | Object | +---------------------+--------------+------+-------------+--------+ | max-retransmit | container | 38 | 5 map | Object | +---------------------+--------------+------+-------------+--------+ | ack-timeout | container | 39 | 5 map | Object | +---------------------+--------------+------+-------------+--------+ | ack-random-factor | container | 40 | 5 map | Object | +---------------------+--------------+------+-------------+--------+ | max-value-decimal | decimal64 | 41 | 6 tag 4 | String | | | | | [-2, | | | | | | integer] | | +---------------------+--------------+------+-------------+--------+ | min-value-decimal | decimal64 | 42 | 6 tag 4 | String | | | | | [-2, | | | | | | integer] | | +---------------------+--------------+------+-------------+--------+ | current-value- | decimal64 | 43 | 6 tag 4 | String | | decimal | | | [-2, | | | | | | integer] | | +---------------------+--------------+------+-------------+--------+ | idle-config | container | 44 | 5 map | Object | +---------------------+--------------+------+-------------+--------+ | trigger-mitigation | boolean | 45 | 7 bits 20 | False | | | | +-------------+--------+ | | | | 7 bits 21 | True | +---------------------+--------------+------+-------------+--------+ | ietf-dots-signal- | container | 46 | 5 map | Object | | channel:redirected- | | | | | | signal | | | | | +---------------------+--------------+------+-------------+--------+ | alt-server | string | 47 | 3 text | String | | | | | string | | +---------------------+--------------+------+-------------+--------+ | alt-server-record | leaf-list | 48 | 4 array | Array | | +--------------+------+-------------+--------+ | | inet:ip- | | 3 text | String | | | address | | string | | +---------------------+--------------+------+-------------+--------+ | ietf-dots-signal- | container | 49 | 5 map | Object | | channel:heartbeat | | | | | +---------------------+--------------+------+-------------+--------+ | probing-rate | container | 50 | 5 map | Object | +---------------------+--------------+------+-------------+--------+ | peer-hb-status | boolean | 51 | 7 bits 20 | False | | | | +-------------+--------+ | | | | 7 bits 21 | True | +---------------------+--------------+------+-------------+--------+

 Table 5: CBOR Key Values Used in DOTS Signal Channel Messages &
                 Their Mappings to JSON and YANG

(D)TLS Protocol Profile and Performance Considerations

(D)TLS Protocol Profile

This section defines the (D)TLS protocol profile of DOTS signal channel over (D)TLS and DOTS data channel over TLS.

There are known attacks on (D)TLS, such as man-in-the-middle and protocol downgrade attacks. These are general attacks on (D)TLS and, as such, they are not specific to DOTS over (D)TLS; refer to the (D)TLS RFCs for discussion of these security issues. DOTS agents MUST adhere to the (D)TLS implementation recommendations and security considerations of RFC7525 except with respect to (D)TLS version. Because DOTS signal channel encryption relying upon (D)TLS is virtually a greenfield deployment, DOTS agents MUST implement only (D)TLS 1.2 or later.

When a DOTS client is configured with a domain name of the DOTS server, and it connects to its configured DOTS server, the server may present it with a PKIX certificate. In order to ensure proper authentication, a DOTS client MUST verify the entire certification path per RFC5280. Additionally, the DOTS client MUST use RFC6125 validation techniques to compare the domain name with the certificate provided. Certification authorities that issue DOTS server certificates SHOULD support the DNS-ID and SRV-ID identifier types. DOTS servers SHOULD prefer the use of DNS-ID and SRV-ID over CN-ID identifier types in certificate requests (as described in Section 2.3 of RFC6125), and the wildcard character '*' SHOULD NOT be included in the presented identifier. DOTS doesn't use URI-IDs for server identity verification.

A key challenge to deploying DOTS is the provisioning of DOTS clients, including the distribution of keying material to DOTS clients to enable the required mutual authentication of DOTS agents. Enrollment over Secure Transport (EST) RFC7030 defines a method of certificate enrollment by which domains operating DOTS servers may provide DOTS clients with all the necessary cryptographic keying material, including a private key and a certificate, to authenticate themselves. One deployment option is to have DOTS clients behave as EST clients for certificate enrollment from an EST server provisioned by the mitigation provider. This document does not specify which EST or other mechanism the DOTS client uses to achieve initial enrollment.

The Server Name Indication (SNI) extension RFC6066 i defines a mechanism for a client to tell a (D)TLS server the name of the server it wants to contact. This is a useful extension for hosting environments where multiple virtual servers are reachable over a single IP address. The DOTS client may or may not know if it is interacting with a DOTS server in a virtual server hosting environment, so the DOTS client SHOULD include the DOTS server FQDN in the SNI extension.

Implementations compliant with this profile MUST implement all of the following items:

  • DTLS record replay detection (Section 3.3 of RFC6347) or an
  equivalent mechanism to protect against replay attacks.
  • DTLS session resumption without server-side state to resume
  session and convey the DOTS signal.
  • At least one of raw public keys RFC7250 or PSK handshake
  RFC4279 with (EC)DHE key exchange.  This reduces the size of the
  ServerHello.  Also, this can be used by DOTS agents that cannot
  obtain certificates.

Implementations compliant with this profile SHOULD implement all of the following items to reduce the delay required to deliver a DOTS signal channel message:

  • TLS False Start RFC7918, which reduces round-trips by allowing
  the TLS client's second flight of messages (ChangeCipherSpec) to
  also contain the DOTS signal.  TLS False Start is formally defined
  for use with TLS, but the same technique is applicable to DTLS as
  well.
  • Cached Information Extension RFC7924 which avoids transmitting
  the server's certificate and certificate chain if the client has
  cached that information from a previous TLS handshake.

Compared to UDP, DOTS signal channel over TCP requires an additional round-trip time (RTT) of latency to establish a TCP connection. DOTS implementations are encouraged to implement TCP Fast Open RFC7413 to eliminate that RTT.

(D)TLS 1.3 Considerations

TLS 1.3 provides critical latency improvements for connection establishment over TLS 1.2. The DTLS 1.3 protocol [DTLS] is based upon the TLS 1.3 protocol and provides equivalent security guarantees. (D)TLS 1.3 provides two basic handshake modes the DOTS signal channel can take advantage of:

  • A full handshake mode in which a DOTS client can send a DOTS
  mitigation request message after one round trip and the DOTS
  server immediately responds with a DOTS mitigation response.  This
  assumes no packet loss is experienced.
  • 0-RTT mode in which the DOTS client can authenticate itself and
  send DOTS mitigation request messages in the first message, thus
  reducing handshake latency. 0-RTT only works if the DOTS client
  has previously communicated with that DOTS server, which is very
  likely with the DOTS signal channel.

The DOTS client has to establish a (D)TLS session with the DOTS server during 'idle' time and share a PSK.

During a DDoS attack, the DOTS client can use the (D)TLS session to convey the DOTS mitigation request message and, if there is no response from the server after multiple retries, the DOTS client can resume the (D)TLS session in 0-RTT mode using PSK.

DOTS servers that support (D)TLS 1.3 MAY allow DOTS clients to send early data (0-RTT). DOTS clients MUST NOT send "CoAP Ping" as early data; such messages MUST be rejected by DOTS servers. Section 8 of RFC8446 discusses some mechanisms to implement in order to limit the impact of replay attacks on 0-RTT data. If the DOTS server accepts 0-RTT, it MUST implement one of these mechanisms to prevent replay at the TLS layer. A DOTS server can reject 0-RTT by sending a TLS HelloRetryRequest.

The DOTS signal channel messages sent as early data by the DOTS client are idempotent requests. As a reminder, the Message ID (Section 3 of RFC7252) is changed each time a new CoAP request is sent, and the Token (Section 5.3.1 of RFC7252) is randomized in each CoAP request. The DOTS server(s) MUST use the Message ID and the Token in the DOTS signal channel message to detect replay of early data at the application layer and accept 0-RTT data at most once from the same DOTS client. This anti-replay defense requires sharing the Message ID and the Token in the 0-RTT data between DOTS servers in the DOTS server domain. DOTS servers do not rely on transport coordinates to identify DOTS peers. As specified in Section 4.4.1, DOTS servers couple the DOTS signal channel sessions using the DOTS client identity and optionally the 'cdid' parameter value. Furthermore, the 'mid' value is monotonically increased by the DOTS client for each mitigation request, thus attackers that replay mitigation requests with lower numeric 'mid' values and overlapping scopes with mitigation requests having higher numeric 'mid' values will be rejected systematically by the DOTS server. Likewise, the 'sid' value is monotonically increased by the DOTS client for each configuration request (Section 4.5.2); attackers replaying configuration requests with lower numeric 'sid' values will be rejected by the DOTS server if it maintains a higher numeric 'sid' value for this DOTS client.

Owing to the aforementioned protections, all DOTS signal channel requests are safe to transmit in TLS 1.3 as early data. Refer to [DOTS-EARLYDATA] for more details.

A simplified TLS 1.3 handshake with 0-RTT DOTS mitigation request message exchange is shown in Figure 29.

   DOTS Client                                    DOTS Server
   ClientHello
   (0-RTT DOTS signal message)
                             -------->
                                                   ServerHello
                                         {EncryptedExtensions}
                                                    {Finished}
                             <--------   [DOTS signal message]
   (end_of_early_data)
   {Finished}                -------->
   [DOTS signal message]     <------->   [DOTS signal message]

Note that:

   () Indicates messages protected 0-RTT keys
   {} Indicates messages protected using handshake keys
   [] Indicates messages protected using 1-RTT keys
        Figure 29: A Simplified TLS 1.3 Handshake with 0-RTT

DTLS MTU and Fragmentation

To avoid DOTS signal message fragmentation and the subsequent decreased probability of message delivery, DOTS agents MUST ensure that the DTLS record fits within a single datagram. As a reminder, DTLS handles fragmentation and reassembly only for handshake messages and not for the application data (Section 4.1.1 of RFC6347). If the path MTU (PMTU) cannot be discovered, DOTS agents MUST assume a PMTU of 1280 bytes, as IPv6 requires that every link in the Internet have an MTU of 1280 octets or greater as specified in RFC8200. If IPv4 support on legacy or otherwise unusual networks is a consideration and the PMTU is unknown, DOTS implementations MAY assume a PMTU of 576 bytes for IPv4 datagrams, as every IPv4 host must be capable of receiving a packet whose length is equal to 576 bytes as discussed in RFC0791 and RFC1122.

The DOTS client must consider the amount of record expansion expected by the DTLS processing when calculating the size of the CoAP message that fits within the PMTU. PMTU MUST be greater than or equal to [CoAP message size + DTLS 1.2 overhead of 13 octets + authentication overhead of the negotiated DTLS cipher suite + block padding] (Section 4.1.1.1 of RFC6347). If the total request size exceeds the PMTU, then the DOTS client MUST split the DOTS signal into separate messages; for example, the list of addresses in the 'target- prefix' parameter could be split into multiple lists and each list conveyed in a new PUT request.

  |  Implementation Note: DOTS choice of message size parameters
  |  works well with IPv6 and with most of today's IPv4 paths.
  |  However, with IPv4, it is harder to safely make sure that there
  |  is no IP fragmentation.  If the IPv4 PMTU is unknown,
  |  implementations may want to limit themselves to more
  |  conservative IPv4 datagram sizes such as 576 bytes, per
  |  RFC0791.

Mutual Authentication of DOTS Agents & Authorization of DOTS Clients

(D)TLS based upon client certificates can be used for mutual authentication between DOTS agents. If, for example, a DOTS gateway is involved, DOTS clients and DOTS gateways must perform mutual authentication; only authorized DOTS clients are allowed to send DOTS signals to a DOTS gateway. The DOTS gateway and the DOTS server must perform mutual authentication; a DOTS server only allows DOTS signal channel messages from an authorized DOTS gateway, thereby creating a two-link chain of transitive authentication between the DOTS client and the DOTS server.

The DOTS server should support certificate-based client authentication. The DOTS client should respond to the DOTS server's TLS CertificateRequest message with the PKIX certificate held by the DOTS client. DOTS client certificate validation must be performed per RFC5280, and the DOTS client certificate must conform to the RFC5280 certificate profile. If a DOTS client does not support TLS client certificate authentication, it must support client authentication based on pre-shared key or raw public key.

+---------------------------------------------+ | example.com domain +---------+ | | | AAA | | | +---------------+ | Server | | | | Application | +------+--+ | | | server +<---------------+ ^ | | | (DOTS client) | | | | | +---------------+ | | | | V V | example.net domain | +-----+----+--+ | +---------------+ | +--------------+ | | | | | | | Guest +<----x---->+ DOTS +<----->+ DOTS | | | (DOTS client)| | gateway | | | server | | +--------------+ | | | | | | +----+--------+ | +---------------+ | ^ | | | | | +----------------+ | | | | DDoS detector | | | | | (DOTS client) +<-------------+ | | +----------------+ | +---------------------------------------------+

Figure 30: Example of Authentication and Authorization of DOTS Agents

In the example depicted in Figure 30, the DOTS gateway and DOTS clients within the 'example.com' domain mutually authenticate. After the DOTS gateway validates the identity of a DOTS client, it communicates with the AAA server in the 'example.com' domain to determine if the DOTS client is authorized to request DDoS mitigation. If the DOTS client is not authorized, a 4.01 (Unauthorized) is returned in the response to the DOTS client. In this example, the DOTS gateway only allows the application server and DDoS attack detector to request DDoS mitigation, but does not permit the user of type 'guest' to request DDoS mitigation.

Also, DOTS gateways and servers located in different domains must perform mutual authentication (e.g., using certificates). A DOTS server will only allow a DOTS gateway with a certificate for a particular domain to request mitigation for that domain. In reference to Figure 30, the DOTS server only allows the DOTS gateway to request mitigation for the 'example.com' domain and not for other domains.

IANA Considerations

DOTS Signal Channel UDP and TCP Port Number

IANA has assigned the port number 4646 (the ASCII decimal value for ".." (DOTS)) to the DOTS signal channel protocol for both UDP and TCP from the "Service Name and Transport Protocol Port Number Registry" available at <https://www.iana.org/assignments/service-names-port- numbers/>.

  Service Name:  dots-signal
  Port Number:  4646
  Transport Protocol:  TCP
  Description:  Distributed Denial-of-Service Open Threat Signaling
     (DOTS) Signal Channel
  Assignee:  IESG
  Contact:  IETF Chair
  Registration Date:  2020-01-16
  Reference:  RFC8782
  Service Name:  dots-signal
  Port Number:  4646
  Transport Protocol:  UDP
  Description:  Distributed Denial-of-Service Open Threat Signaling
     (DOTS) Signal Channel
  Assignee:  IESG
  Contact:  IETF Chair
  Registration Date:  2020-01-16
  Reference:  RFC8782

Well-Known 'dots' URI

IANA has registered the 'dots' well-known URI (Table 6) in the Well- Known URIs registry (<https://www.iana.org/assignments/well-known- uris/well-known-uris.xhtml>) as defined by RFC8615:

 +------------+------------+-----------+-----------+-------------+
 | URI Suffix | Change     | Reference | Status    | Related     |
 |            | Controller |           |           | information |
 +============+============+===========+===========+=============+
 | dots       | IETF       | RFC8782 | permanent | None        |
 +------------+------------+-----------+-----------+-------------+
                   Table 6: 'dots' Well-Known URI

Media Type Registration

IANA has registered the "application/dots+cbor" media type in the "Media Types" registry [IANA-MediaTypes] in the manner described in RFC6838, which can be used to indicate that the content is a DOTS signal channel object:

Type name: application

Subtype name: dots+cbor

Required parameters: N/A

Optional parameters: N/A

Encoding considerations: binary

Security considerations: See the Security Considerations section of RFC8782.

Interoperability considerations: N/A

Published specification: RFC8782

Applications that use this media type: DOTS agents sending DOTS messages over CoAP over (D)TLS.

Fragment identifier considerations: N/A

Additional information:

  Deprecated alias names for this type: N/A
  Magic number(s): N/A
  File extension(s): N/A
  Macintosh file type code(s): N/A

Person & email address to contact for further information: IESG, [email protected]

Intended usage: COMMON

Restrictions on usage: none

Author: See Authors' Addresses section.

Change controller: IESG

Provisional registration? No

CoAP Content-Formats Registration

IANA has registered the CoAP Content-Format ID for the "application/ dots+cbor" media type in the "CoAP Content-Formats" registry [IANA-CoAP-Content-Formats]:

  • Media Type: application/dots+cbor
  • Encoding: -
  • ID: 271
  • Reference: RFC8782

CBOR Tag Registration

This section defines the DOTS CBOR tag as another means for applications to declare that a CBOR data structure is a DOTS signal channel object. Its use is optional and is intended for use in cases in which this information would not otherwise be known. The DOTS CBOR tag is not required for DOTS signal channel protocol version specified in this document. If present, the DOTS tag MUST prefix a DOTS signal channel object.

IANA has registered the DOTS signal channel CBOR tag in the "CBOR Tags" registry [IANA-CBOR-Tags]:

  • Tag: 271
  • Data Item: DDoS Open Threat Signaling (DOTS) signal channel object
  • Semantics: DDoS Open Threat Signaling (DOTS) signal channel
  object, as defined in RFC8782

DOTS Signal Channel Protocol Registry

IANA has created a new registry titled the "Distributed Denial-of- Service Open Threat Signaling (DOTS) Signal Channel" registry. The following sections define subregistries.

DOTS Signal Channel CBOR Key Values Subregistry

IANA has created a new subregistry titled "DOTS Signal Channel CBOR Key Values".

The structure of this subregistry is provided in Section 9.6.1.1. Section 9.6.1.2 provides the registry as initially populated with the values in Table 7.

Registration Template

Parameter name:

  Parameter name as used in the DOTS signal channel.

CBOR Key Value:

  Key value for the parameter.  The key value MUST be an integer in
  the 1-65535 range.  The key values of the comprehension-required
  range (0x0001 - 0x3FFF) and of the comprehension-optional range
  (0x8000 - 0xBFFF) are assigned by IETF Review (Section 4.8 of
  RFC8126).  The key values of the comprehension-optional range
  (0x4000 - 0x7FFF) are assigned by Specification Required
  (Section 4.6 of RFC8126) and of the comprehension-optional range
  (0xC000 - 0xFFFF) are reserved for Private Use (Section 4.1 of
  RFC8126).
  Registration requests for the 0x4000 - 0x7FFF range are evaluated
  after a three-week review period on the dots-signal-reg-
  [email protected] mailing list, on the advice of one or more
  Designated Experts.  However, to allow for the allocation of
  values prior to publication, the Designated Experts may approve
  registration once they are satisfied that such a specification
  will be published.  New registration requests should be sent in
  the form of an email to the review mailing list; the request
  should use an appropriate subject (e.g., "Request to register CBOR
  Key Value for DOTS: example").  IANA will only accept new
  registrations from the Designated Experts, and it will check that
  review was requested on the mailing list in accordance with these
  procedures.
  Within the review period, the Designated Experts will either
  approve or deny the registration request, communicating this
  decision to the review list and IANA.  Denials should include an
  explanation and, if applicable, suggestions as to how to make the
  request successful.  Registration requests that are undetermined
  for a period longer than 21 days can be brought to the IESG's
  attention (using the [email protected] mailing list) for resolution.
  Criteria that should be applied by the Designated Experts include
  determining whether the proposed registration duplicates existing
  functionality, whether it is likely to be of general applicability
  or whether it is useful only for a single use case, and whether
  the registration description is clear.  IANA must only accept
  registry updates to the 0x4000 - 0x7FFF range from the Designated
  Experts and should direct all requests for registration to the
  review mailing list.  It is suggested that multiple Designated
  Experts be appointed.  In cases where a registration decision
  could be perceived as creating a conflict of interest for a
  particular Expert, that Expert should defer to the judgment of the
  other Experts.

CBOR Major Type:

  CBOR Major type and optional tag for the parameter.

Change Controller:

  For Standards Track RFCs, list the "IESG".  For others, give the
  name of the responsible party.  Other details (e.g., email
  address) may also be included.

Specification Document(s):

  Reference to the document or documents that specify the parameter,
  preferably including URIs that can be used to retrieve copies of
  the documents.  An indication of the relevant sections may also be
  included but is not required.
Initial Subregistry Content

+---------------------+------------+-----+----------+---------------+ | Parameter Name | CBOR Key |CBOR | Change | Specification | | | Value |Major|Controller| Document(s) | | | |Type | | | +=====================+============+=====+==========+===============+ | Reserved | 0 | | | RFC8782 | +---------------------+------------+-----+----------+---------------+ | ietf-dots-signal- | 1 | 5 | IESG | RFC8782 | | channel:mitigation- | | | | | | scope | | | | | +---------------------+------------+-----+----------+---------------+ | scope | 2 | 4 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | cdid | 3 | 3 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | cuid | 4 | 3 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | mid | 5 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | target-prefix | 6 | 4 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | target-port-range | 7 | 4 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | lower-port | 8 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | upper-port | 9 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | target-protocol | 10 | 4 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | target-fqdn | 11 | 4 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | target-uri | 12 | 4 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | alias-name | 13 | 4 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | lifetime | 14 | 0/1 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | mitigation-start | 15 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | status | 16 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ |conflict-information | 17 | 5 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | conflict-status | 18 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | conflict-cause | 19 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | retry-timer | 20 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | conflict-scope | 21 | 5 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | acl-list | 22 | 4 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | acl-name | 23 | 3 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | acl-type | 24 | 3 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | bytes-dropped | 25 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | bps-dropped | 26 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | pkts-dropped | 27 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | pps-dropped | 28 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | attack-status | 29 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | ietf-dots-signal- | 30 | 5 | IESG | RFC8782 | |channel:signal-config| | | | | +---------------------+------------+-----+----------+---------------+ | sid | 31 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | mitigating-config | 32 | 5 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | heartbeat-interval | 33 | 5 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | min-value | 34 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | max-value | 35 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | current-value | 36 | 0 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | missing-hb-allowed | 37 | 5 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | max-retransmit | 38 | 5 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | ack-timeout | 39 | 5 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | ack-random-factor | 40 | 5 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | min-value-decimal | 41 |6tag4| IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | max-value-decimal | 42 |6tag4| IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ |current-value-decimal| 43 |6tag4| IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | idle-config | 44 | 5 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | trigger-mitigation | 45 | 7 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | ietf-dots-signal- | 46 | 5 | IESG | RFC8782 | | channel:redirected- | | | | | | signal | | | | | +---------------------+------------+-----+----------+---------------+ | alt-server | 47 | 3 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | alt-server-record | 48 | 4 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | ietf-dots-signal- | 49 | 5 | IESG | RFC8782 | | channel:heartbeat | | | | | +---------------------+------------+-----+----------+---------------+ | probing-rate | 50 | 5 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | peer-hb-status | 51 | 7 | IESG | RFC8782 | +---------------------+------------+-----+----------+---------------+ | Unassigned | 52-49151 | | | | +---------------------+------------+-----+----------+---------------+ |Reserved for Private |49152-65535 | | | RFC8782 | | Use | | | | | +---------------------+------------+-----+----------+---------------+

   Table 7: Initial DOTS Signal Channel CBOR Key Values Registry

Status Codes Subregistry

IANA has created a new subregistry titled "DOTS Signal Channel Status Codes". Codes in this registry are used as valid values of 'status' parameter.

The registry is initially populated with the following values:

+--------------+---------------+----------------------+-----------+
|         Code | Label         | Description          | Reference |
+==============+===============+======================+===========+
|            0 | Reserved      |                      | RFC8782 |
+--------------+---------------+----------------------+-----------+
|            1 | attack-       | Attack mitigation    | RFC8782 |
|              | mitigation-   | setup is in progress |           |
|              | in-progress   | (e.g., changing the  |           |
|              |               | network path to      |           |
|              |               | redirect the inbound |           |
|              |               | traffic to a DOTS    |           |
|              |               | mitigator).          |           |
+--------------+---------------+----------------------+-----------+
|            2 | attack-       | Attack is being      | RFC8782 |
|              | successfully- | successfully         |           |
|              | mitigated     | mitigated (e.g.,     |           |
|              |               | traffic is           |           |
|              |               | redirected to a DDoS |           |
|              |               | mitigator and attack |           |
|              |               | traffic is dropped). |           |
+--------------+---------------+----------------------+-----------+
|            3 | attack-       | Attack has stopped   | RFC8782 |
|              | stopped       | and the DOTS client  |           |
|              |               | can withdraw the     |           |
|              |               | mitigation request.  |           |
+--------------+---------------+----------------------+-----------+
|            4 | attack-       | Attack has exceeded  | RFC8782 |
|              | exceeded-     | the mitigation       |           |
|              | capability    | provider capability. |           |
+--------------+---------------+----------------------+-----------+
|            5 | dots-client-  | DOTS client has      | RFC8782 |
|              | withdrawn-    | withdrawn the        |           |
|              | mitigation    | mitigation request   |           |
|              |               | and the mitigation   |           |
|              |               | is active but        |           |
|              |               | terminating.         |           |
+--------------+---------------+----------------------+-----------+
|            6 | attack-       | Attack mitigation is | RFC8782 |
|              | mitigation-   | now terminated.      |           |
|              | terminated    |                      |           |
+--------------+---------------+----------------------+-----------+
|            7 | attack-       | Attack mitigation is | RFC8782 |
|              | mitigation-   | withdrawn.           |           |
|              | withdrawn     |                      |           |
+--------------+---------------+----------------------+-----------+
|            8 | attack-       | Attack mitigation    | RFC8782 |
|              | mitigation-   | will be triggered    |           |
|              | signal-loss   | for the mitigation   |           |
|              |               | request only when    |           |
|              |               | the DOTS signal      |           |
|              |               | channel session is   |           |
|              |               | lost.                |           |
+--------------+---------------+----------------------+-----------+
| 9-2147483647 | Unassigned    |                      |           |
+--------------+---------------+----------------------+-----------+
         Table 8: Initial DOTS Signal Channel Status Codes

New codes can be assigned via Standards Action RFC8126.

Conflict Status Codes Subregistry

IANA has created a new subregistry titled "DOTS Signal Channel Conflict Status Codes". Codes in this registry are used as valid values of 'conflict-status' parameter.

The registry is initially populated with the following values:

+--------------+-------------------+--------------------+-----------+ | Code | Label | Description | Reference | +==============+===================+====================+===========+ | 0 | Reserved | | RFC8782 | +--------------+-------------------+--------------------+-----------+ | 1 | request-inactive- | DOTS server | RFC8782 | | | other-active | has detected | | | | | conflicting | | | | | mitigation | | | | | requests from | | | | | different DOTS | | | | | clients. This | | | | | mitigation | | | | | request is | | | | | currently | | | | | inactive until | | | | | the conflicts | | | | | are resolved. | | | | | Another | | | | | mitigation | | | | | request is | | | | | active. | | +--------------+-------------------+--------------------+-----------+ | 2 | request-active | DOTS server | RFC8782 | | | | has detected | | | | | conflicting | | | | | mitigation | | | | | requests from | | | | | different DOTS | | | | | clients. This | | | | | mitigation | | | | | request is | | | | | currently | | | | | active. | | +--------------+-------------------+--------------------+-----------+ | 3 | all-requests- | DOTS server | RFC8782 | | | inactive | has detected | | | | | conflicting | | | | | mitigation | | | | | requests from | | | | | different DOTS | | | | | clients. All | | | | | conflicting | | | | | mitigation | | | | | requests are | | | | | inactive. | | +--------------+-------------------+--------------------+-----------+ | 4-2147483647 | Unassigned | | | +--------------+-------------------+--------------------+-----------+

     Table 9: Initial DOTS Signal Channel Conflict Status Codes

New codes can be assigned via Standards Action RFC8126.

Conflict Cause Codes Subregistry

IANA has created a new subregistry titled "DOTS Signal Channel Conflict Cause Codes". Codes in this registry are used as valid values of 'conflict-cause' parameter.

The registry is initially populated with the following values:

+--------------+---------------------+----------------+-----------+
|         Code | Label               | Description    | Reference |
+==============+=====================+================+===========+
|            0 | Reserved            |                | RFC8782 |
+--------------+---------------------+----------------+-----------+
|            1 | overlapping-targets | Overlapping    | RFC8782 |
|              |                     | targets.       |           |
+--------------+---------------------+----------------+-----------+
|            2 | conflict-with-      | Conflicts with | RFC8782 |
|              | acceptlist          | an existing    |           |
|              |                     | accept-list.   |           |
|              |                     | This code is   |           |
|              |                     | returned when  |           |
|              |                     | the DDoS       |           |
|              |                     | mitigation     |           |
|              |                     | detects source |           |
|              |                     | addresses/     |           |
|              |                     | prefixes in    |           |
|              |                     | the accept-    |           |
|              |                     | listed ACLs    |           |
|              |                     | are attacking  |           |
|              |                     | the target.    |           |
+--------------+---------------------+----------------+-----------+
|            3 | cuid-collision      | CUID           | RFC8782 |
|              |                     | Collision.     |           |
|              |                     | This code is   |           |
|              |                     | returned when  |           |
|              |                     | a DOTS client  |           |
|              |                     | uses a 'cuid'  |           |
|              |                     | that is        |           |
|              |                     | already used   |           |
|              |                     | by another     |           |
|              |                     | DOTS client.   |           |
+--------------+---------------------+----------------+-----------+
| 4-2147483647 | Unassigned          |                |           |
+--------------+---------------------+----------------+-----------+
     Table 10: Initial DOTS Signal Channel Conflict Cause Codes

New codes can be assigned via Standards Action RFC8126.

Attack Status Codes Subregistry

IANA has created a new subregistry titled "DOTS Signal Channel Attack Status Codes". Codes in this registry are used as valid values of 'attack-status' parameter.

The registry is initially populated with the following values:

+--------------+----------------------+-----------------+-----------+ | Code | Label | Description | Reference | +==============+======================+=================+===========+ | 0 | Reserved | | RFC8782 | +--------------+----------------------+-----------------+-----------+ | 1 | under-attack | The DOTS | RFC8782 | | | | client | | | | | determines | | | | | that it is | | | | | still under | | | | | attack. | | +--------------+----------------------+-----------------+-----------+ | 2 | attack-successfully- | The DOTS | RFC8782 | | | mitigated | client | | | | | determines | | | | | that the | | | | | attack is | | | | | successfully | | | | | mitigated. | | +--------------+----------------------+-----------------+-----------+ | 3-2147483647 | Unassigned | | | +--------------+----------------------+-----------------+-----------+

     Table 11: Initial DOTS Signal Channel Attack Status Codes

New codes can be assigned via Standards Action RFC8126.

DOTS Signal Channel YANG Modules

IANA has registered the following URIs in the "ns" subregistry within the "IETF XML Registry" RFC3688:

  URI:  urn:ietf:params:xml:ns:yang:ietf-dots-signal-channel
  Registrant Contact:  The IESG.
  XML:  N/A; the requested URI is an XML namespace.
  URI:  urn:ietf:params:xml:ns:yang:iana-dots-signal-channel
  Registrant Contact:  IANA.
  XML:  N/A; the requested URI is an XML namespace.

IANA has registered the following YANG modules in the "YANG Module Names" subregistry RFC7950 within the "YANG Parameters" registry.

  Name:  ietf-dots-signal-channel
  Maintained by IANA:  N
  Namespace:  urn:ietf:params:xml:ns:yang:ietf-dots-signal-channel
  Prefix:  signal
  Reference:  RFC8782
  Name:  iana-dots-signal-channel
  Maintained by IANA:  Y
  Namespace:  urn:ietf:params:xml:ns:yang:iana-dots-signal-channel
  Prefix:  iana-signal
  Reference:  RFC8782

This document defines the initial version of the IANA-maintained iana-dots-signal-channel YANG module. IANA has added this note:

  Status, conflict status, conflict cause, and attack status values
  must not be directly added to the iana-dots-signal-channel YANG
  module.  They must instead be respectively added to the "DOTS
  Status Codes", "DOTS Conflict Status Codes", "DOTS Conflict Cause
  Codes", and "DOTS Attack Status Codes" registries.

When a 'status', 'conflict-status', 'conflict-cause', or 'attack- status' value is respectively added to the "DOTS Status Codes", "DOTS Conflict Status Codes", "DOTS Conflict Cause Codes", or "DOTS Attack Status Codes" registry, a new "enum" statement must be added to the iana-dots-signal-channel YANG module. The following "enum" statement, and substatements thereof, should be defined:

"enum": Replicates the label from the registry.

"value": Contains the IANA-assigned value corresponding to the

              'status', 'conflict-status', 'conflict-cause', or
              'attack-status'.

"description": Replicates the description from the registry.

"reference": Replicates the reference from the registry and adds

              the title of the document.

When the iana-dots-signal-channel YANG module is updated, a new "revision" statement must be added in front of the existing revision statements.

IANA added this note to "DOTS Status Codes", "DOTS Conflict Status Codes", "DOTS Conflict Cause Codes", and "DOTS Attack Status Codes" registries:

  When this registry is modified, the YANG module iana-dots-signal-
  channel must be updated as defined in RFC8782.

10. Security Considerations

High-level DOTS security considerations are documented in RFC8612 and [DOTS-ARCH].

Authenticated encryption MUST be used for data confidentiality and message integrity. The interaction between the DOTS agents requires Datagram Transport Layer Security (DTLS) or Transport Layer Security (TLS) with a cipher suite offering confidentiality protection, and the guidance given in RFC7525 MUST be followed to avoid attacks on (D)TLS. The (D)TLS protocol profile used for the DOTS signal channel is specified in Section 7.

If TCP is used between DOTS agents, an attacker may be able to inject RST packets, bogus application segments, etc., regardless of whether TLS authentication is used. Because the application data is TLS protected, this will not result in the application receiving bogus data, but it will constitute a DoS on the connection. This attack can be countered by using TCP Authentication Option (TCP-AO) RFC5925. Although not widely adopted, if TCP-AO is used, then any bogus packets injected by an attacker will be rejected by the TCP-AO integrity check and therefore will never reach the TLS layer.

If the 'cuid' is guessable, a misbehaving DOTS client from within the client's domain can use the 'cuid' of another DOTS client of the domain to delete or alter active mitigations. For this attack vector to happen, the misbehaving client needs to pass the security validation checks by the DOTS server, and eventually the checks of a client-domain DOTS gateway.

A similar attack can be achieved by a compromised DOTS client that can sniff the TLS 1.2 handshake, use the client certificate to identify the 'cuid' used by another DOTS client. This attack is not possible if algorithms such as version 4 Universally Unique IDentifiers (UUIDs) in Section 4.4 of RFC4122 are used to generate the 'cuid' because such UUIDs are not a deterministic function of the client certificate. Likewise, this attack is not possible with TLS 1.3 because most of the TLS handshake is encrypted and the client certificate is not visible to eavesdroppers.

A compromised DOTS client can collude with a DDoS attacker to send mitigation request for a target resource, get the mitigation efficacy from the DOTS server, and convey the mitigation efficacy to the DDoS attacker to possibly change the DDoS attack strategy. Obviously, signaling an attack by the compromised DOTS client to the DOTS server will trigger attack mitigation. This attack can be prevented by monitoring and auditing DOTS clients to detect misbehavior and to deter misuse, and by only authorizing the DOTS client to request mitigation for specific target resources (e.g., an application server is authorized to request mitigation for its IP addresses, but a DDoS mitigator can request mitigation for any target resource in the network). Furthermore, DOTS clients are typically co-located on network security services (e.g., firewall), and a compromised security service potentially can do a lot more damage to the network.

Rate-limiting DOTS requests, including those with new 'cuid' values, from the same DOTS client defend against DoS attacks that would result in varying the 'cuid' to exhaust DOTS server resources. Rate- limit policies SHOULD be enforced on DOTS gateways (if deployed) and DOTS servers.

In order to prevent leaking internal information outside a client's domain, DOTS gateways located in the client domain SHOULD NOT reveal the identification information that pertains to internal DOTS clients (e.g., source IP address, client's hostname) unless explicitly configured to do so.

DOTS servers MUST verify that requesting DOTS clients are entitled to trigger actions on a given IP prefix. That is, only actions on IP resources that belong to the DOTS client's domain MUST be authorized by a DOTS server. The exact mechanism for the DOTS servers to validate that the target prefixes are within the scope of the DOTS client domain is deployment specific.

The presence of DOTS gateways may lead to infinite forwarding loops, which is undesirable. To prevent and detect such loops, this document uses the Hop-Limit option.

When FQDNs are used as targets, the DOTS server MUST rely upon DNS privacy-enabling protocols (e.g., DNS over TLS RFC7858 or DNS over HTTPS (DoH) RFC8484) to prevent eavesdroppers from possibly identifying the target resources protected by the DDoS mitigation service to ensure the target FQDN resolution is authentic (e.g., DNSSEC RFC4034).

CoAP-specific security considerations are discussed in Section 11 of RFC7252, while CBOR-related security considerations are discussed in Section 8 of RFC7049.

11. References

11.1. Normative References

RFC0791 Postel, J., "Internet Protocol", STD 5, RFC 791,

          DOI 10.17487/RFC0791, September 1981,
          <https://www.rfc-editor.org/info/rfc791>.

RFC1122 Braden, R., Ed., "Requirements for Internet Hosts -

          Communication Layers", STD 3, RFC 1122,
          DOI 10.17487/RFC1122, October 1989,
          <https://www.rfc-editor.org/info/rfc1122>.

RFC2119 Bradner, S., "Key words for use in RFCs to Indicate

          Requirement Levels", BCP 14, RFC 2119,
          DOI 10.17487/RFC2119, March 1997,
          <https://www.rfc-editor.org/info/rfc2119>.

RFC3688 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

          DOI 10.17487/RFC3688, January 2004,
          <https://www.rfc-editor.org/info/rfc3688>.

RFC3986 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

          Resource Identifier (URI): Generic Syntax", STD 66,
          RFC 3986, DOI 10.17487/RFC3986, January 2005,
          <https://www.rfc-editor.org/info/rfc3986>.

RFC4279 Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key

          Ciphersuites for Transport Layer Security (TLS)",
          RFC 4279, DOI 10.17487/RFC4279, December 2005,
          <https://www.rfc-editor.org/info/rfc4279>.

RFC4632 Fuller, V. and T. Li, "Classless Inter-domain Routing

          (CIDR): The Internet Address Assignment and Aggregation
          Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August
          2006, <https://www.rfc-editor.org/info/rfc4632>.

RFC4648 Josefsson, S., "The Base16, Base32, and Base64 Data

          Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
          <https://www.rfc-editor.org/info/rfc4648>.

RFC5246 Dierks, T. and E. Rescorla, "The Transport Layer Security

          (TLS) Protocol Version 1.2", RFC 5246,
          DOI 10.17487/RFC5246, August 2008,
          <https://www.rfc-editor.org/info/rfc5246>.

RFC5280 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

          Housley, R., and W. Polk, "Internet X.509 Public Key
          Infrastructure Certificate and Certificate Revocation List
          (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
          <https://www.rfc-editor.org/info/rfc5280>.

RFC6066 Eastlake 3rd, D., "Transport Layer Security (TLS)

          Extensions: Extension Definitions", RFC 6066,
          DOI 10.17487/RFC6066, January 2011,
          <https://www.rfc-editor.org/info/rfc6066>.

RFC6125 Saint-Andre, P. and J. Hodges, "Representation and

          Verification of Domain-Based Application Service Identity
          within Internet Public Key Infrastructure Using X.509
          (PKIX) Certificates in the Context of Transport Layer
          Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
          2011, <https://www.rfc-editor.org/info/rfc6125>.

RFC6347 Rescorla, E. and N. Modadugu, "Datagram Transport Layer

          Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
          January 2012, <https://www.rfc-editor.org/info/rfc6347>.

RFC6991 Schoenwaelder, J., Ed., "Common YANG Data Types",

          RFC 6991, DOI 10.17487/RFC6991, July 2013,
          <https://www.rfc-editor.org/info/rfc6991>.

RFC7049 Bormann, C. and P. Hoffman, "Concise Binary Object

          Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
          October 2013, <https://www.rfc-editor.org/info/rfc7049>.

RFC7250 Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,

          Weiler, S., and T. Kivinen, "Using Raw Public Keys in
          Transport Layer Security (TLS) and Datagram Transport
          Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
          June 2014, <https://www.rfc-editor.org/info/rfc7250>.

RFC7252 Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

          Application Protocol (CoAP)", RFC 7252,
          DOI 10.17487/RFC7252, June 2014,
          <https://www.rfc-editor.org/info/rfc7252>.

RFC7525 Sheffer, Y., Holz, R., and P. Saint-Andre,

          "Recommendations for Secure Use of Transport Layer
          Security (TLS) and Datagram Transport Layer Security
          (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
          2015, <https://www.rfc-editor.org/info/rfc7525>.

RFC7641 Hartke, K., "Observing Resources in the Constrained

          Application Protocol (CoAP)", RFC 7641,
          DOI 10.17487/RFC7641, September 2015,
          <https://www.rfc-editor.org/info/rfc7641>.

RFC7918 Langley, A., Modadugu, N., and B. Moeller, "Transport

          Layer Security (TLS) False Start", RFC 7918,
          DOI 10.17487/RFC7918, August 2016,
          <https://www.rfc-editor.org/info/rfc7918>.

RFC7924 Santesson, S. and H. Tschofenig, "Transport Layer Security

          (TLS) Cached Information Extension", RFC 7924,
          DOI 10.17487/RFC7924, July 2016,
          <https://www.rfc-editor.org/info/rfc7924>.

RFC7950 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

          RFC 7950, DOI 10.17487/RFC7950, August 2016,
          <https://www.rfc-editor.org/info/rfc7950>.

RFC7959 Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in

          the Constrained Application Protocol (CoAP)", RFC 7959,
          DOI 10.17487/RFC7959, August 2016,
          <https://www.rfc-editor.org/info/rfc7959>.

RFC8085 Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

          Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
          March 2017, <https://www.rfc-editor.org/info/rfc8085>.

RFC8126 Cotton, M., Leiba, B., and T. Narten, "Guidelines for

          Writing an IANA Considerations Section in RFCs", BCP 26,
          RFC 8126, DOI 10.17487/RFC8126, June 2017,
          <https://www.rfc-editor.org/info/rfc8126>.

RFC8174 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

          2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
          May 2017, <https://www.rfc-editor.org/info/rfc8174>.

RFC8200 Deering, S. and R. Hinden, "Internet Protocol, Version 6

          (IPv6) Specification", STD 86, RFC 8200,
          DOI 10.17487/RFC8200, July 2017,
          <https://www.rfc-editor.org/info/rfc8200>.

RFC8305 Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:

          Better Connectivity Using Concurrency", RFC 8305,
          DOI 10.17487/RFC8305, December 2017,
          <https://www.rfc-editor.org/info/rfc8305>.

RFC8323 Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,

          Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
          Application Protocol) over TCP, TLS, and WebSockets",
          RFC 8323, DOI 10.17487/RFC8323, February 2018,
          <https://www.rfc-editor.org/info/rfc8323>.

RFC8446 Rescorla, E., "The Transport Layer Security (TLS) Protocol

          Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
          <https://www.rfc-editor.org/info/rfc8446>.

RFC8615 Nottingham, M., "Well-Known Uniform Resource Identifiers

          (URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,
          <https://www.rfc-editor.org/info/rfc8615>.

RFC8768 Boucadair, M., Reddy.K, T., and J. Shallow, "Constrained

          Application Protocol (CoAP) Hop-Limit Option", RFC 8768,
          DOI 10.17487/RFC8768, March 2020,
          <https://www.rfc-editor.org/info/rfc8768>.

11.2. Informative References

[COMI] Veillette, M., Stok, P., Pelov, A., Bierman, A., and I.

          Petrov, "CoAP Management Interface", Work in Progress,
          Internet-Draft, draft-ietf-core-comi-09, 9 March 2020,
          <https://tools.ietf.org/html/draft-ietf-core-comi-09>.

[CORE-YANG-CBOR]

          Veillette, M., Petrov, I., and A. Pelov, "CBOR Encoding of
          Data Modeled with YANG", Work in Progress, Internet-Draft,
          draft-ietf-core-yang-cbor-12, 9 March 2020,
          <https://tools.ietf.org/html/draft-ietf-core-yang-cbor-
          12>.

[DOTS-ARCH]

          Mortensen, A., Reddy.K, T., Andreasen, F., Teague, N., and
          R. Compton, "Distributed-Denial-of-Service Open Threat
          Signaling (DOTS) Architecture", Work in Progress,
          Internet-Draft, draft-ietf-dots-architecture-18, 6 March
          2020, <https://tools.ietf.org/html/draft-ietf-dots-
          architecture-18>.

[DOTS-EARLYDATA]

          Boucadair, M. and T. Reddy.K, "Using Early Data in DOTS",
          Work in Progress, Internet-Draft, draft-boucadair-dots-
          earlydata-00, 29 January 2019,
          <https://tools.ietf.org/html/draft-boucadair-dots-
          earlydata-00>.

[DOTS-MH] Boucadair, M., Reddy.K, T., and W. Pan, "Multi-homing

          Deployment Considerations for Distributed-Denial-of-
          Service Open Threat Signaling (DOTS)", Work in Progress,
          Internet-Draft, draft-ietf-dots-multihoming-03, 22 January
          2020, <https://tools.ietf.org/html/draft-ietf-dots-
          multihoming-03>.

[DOTS-SERVER-DISC]

          Boucadair, M. and T. Reddy.K, "Distributed-Denial-of-
          Service Open Threat Signaling (DOTS) Agent Discovery",
          Work in Progress, Internet-Draft, draft-ietf-dots-server-
          discovery-10, 7 February 2020,
          <https://tools.ietf.org/html/draft-ietf-dots-server-
          discovery-10>.

[DOTS-USE-CASES]

          Dobbins, R., Migault, D., Moskowitz, R., Teague, N., Xia,
          L., and K. Nishizuka, "Use cases for DDoS Open Threat
          Signaling", Work in Progress, Internet-Draft, draft-ietf-
          dots-use-cases-21, 15 May 2020,
          <https://tools.ietf.org/html/draft-ietf-dots-use-cases-
          21>.

[DTLS] Rescorla, E., Tschofenig, H., and N. Modadugu, "The

          Datagram Transport Layer Security (DTLS) Protocol Version
          1.3", Work in Progress, Internet-Draft, draft-ietf-tls-
          dtls13-37, 9 March 2020,
          <https://tools.ietf.org/html/draft-ietf-tls-dtls13-37>.

[IANA-CBOR-Tags]

          IANA, "Concise Binary Object Representation (CBOR) Tags",
          <http://www.iana.org/assignments/cbor-tags/cbor-
          tags.xhtml>.

[IANA-CoAP-Content-Formats]

          IANA, "CoAP Content-Formats",
          <http://www.iana.org/assignments/core-parameters/core-
          parameters.xhtml#content-formats>.

[IANA-MediaTypes]

          IANA, "Media Types",
          <http://www.iana.org/assignments/media-types>.

[IANA-Proto]

          IANA, "Protocol Numbers", 2011,
          <http://www.iana.org/assignments/protocol-numbers>.

RFC3022 Srisuresh, P. and K. Egevang, "Traditional IP Network

          Address Translator (Traditional NAT)", RFC 3022,
          DOI 10.17487/RFC3022, January 2001,
          <https://www.rfc-editor.org/info/rfc3022>.

RFC4034 Arends, R., Austein, R., Larson, M., Massey, D., and S.

          Rose, "Resource Records for the DNS Security Extensions",
          RFC 4034, DOI 10.17487/RFC4034, March 2005,
          <https://www.rfc-editor.org/info/rfc4034>.

RFC4122 Leach, P., Mealling, M., and R. Salz, "A Universally

          Unique IDentifier (UUID) URN Namespace", RFC 4122,
          DOI 10.17487/RFC4122, July 2005,
          <https://www.rfc-editor.org/info/rfc4122>.

RFC4340 Kohler, E., Handley, M., and S. Floyd, "Datagram

          Congestion Control Protocol (DCCP)", RFC 4340,
          DOI 10.17487/RFC4340, March 2006,
          <https://www.rfc-editor.org/info/rfc4340>.

RFC4732 Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet

          Denial-of-Service Considerations", RFC 4732,
          DOI 10.17487/RFC4732, December 2006,
          <https://www.rfc-editor.org/info/rfc4732>.

RFC4787 Audet, F., Ed. and C. Jennings, "Network Address

          Translation (NAT) Behavioral Requirements for Unicast
          UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
          2007, <https://www.rfc-editor.org/info/rfc4787>.

RFC4960 Stewart, R., Ed., "Stream Control Transmission Protocol",

          RFC 4960, DOI 10.17487/RFC4960, September 2007,
          <https://www.rfc-editor.org/info/rfc4960>.

RFC4987 Eddy, W., "TCP SYN Flooding Attacks and Common

          Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
          <https://www.rfc-editor.org/info/rfc4987>.

RFC5925 Touch, J., Mankin, A., and R. Bonica, "The TCP

          Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
          June 2010, <https://www.rfc-editor.org/info/rfc5925>.

RFC6052 Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.

          Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052,
          DOI 10.17487/RFC6052, October 2010,
          <https://www.rfc-editor.org/info/rfc6052>.

RFC6146 Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful

          NAT64: Network Address and Protocol Translation from IPv6
          Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
          April 2011, <https://www.rfc-editor.org/info/rfc6146>.

RFC6234 Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms

          (SHA and SHA-based HMAC and HKDF)", RFC 6234,
          DOI 10.17487/RFC6234, May 2011,
          <https://www.rfc-editor.org/info/rfc6234>.

RFC6296 Wasserman, M. and F. Baker, "IPv6-to-IPv6 Network Prefix

          Translation", RFC 6296, DOI 10.17487/RFC6296, June 2011,
          <https://www.rfc-editor.org/info/rfc6296>.

RFC6724 Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,

          "Default Address Selection for Internet Protocol Version 6
          (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
          <https://www.rfc-editor.org/info/rfc6724>.

RFC6838 Freed, N., Klensin, J., and T. Hansen, "Media Type

          Specifications and Registration Procedures", BCP 13,
          RFC 6838, DOI 10.17487/RFC6838, January 2013,
          <https://www.rfc-editor.org/info/rfc6838>.

RFC6887 Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and

          P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
          DOI 10.17487/RFC6887, April 2013,
          <https://www.rfc-editor.org/info/rfc6887>.

RFC6888 Perreault, S., Ed., Yamagata, I., Miyakawa, S., Nakagawa,

          A., and H. Ashida, "Common Requirements for Carrier-Grade
          NATs (CGNs)", BCP 127, RFC 6888, DOI 10.17487/RFC6888,
          April 2013, <https://www.rfc-editor.org/info/rfc6888>.

RFC7030 Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

          "Enrollment over Secure Transport", RFC 7030,
          DOI 10.17487/RFC7030, October 2013,
          <https://www.rfc-editor.org/info/rfc7030>.

RFC7413 Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP

          Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
          <https://www.rfc-editor.org/info/rfc7413>.

RFC7452 Tschofenig, H., Arkko, J., Thaler, D., and D. McPherson,

          "Architectural Considerations in Smart Object Networking",
          RFC 7452, DOI 10.17487/RFC7452, March 2015,
          <https://www.rfc-editor.org/info/rfc7452>.

RFC7589 Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the

          NETCONF Protocol over Transport Layer Security (TLS) with
          Mutual X.509 Authentication", RFC 7589,
          DOI 10.17487/RFC7589, June 2015,
          <https://www.rfc-editor.org/info/rfc7589>.

RFC7858 Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,

          and P. Hoffman, "Specification for DNS over Transport
          Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
          2016, <https://www.rfc-editor.org/info/rfc7858>.

RFC7951 Lhotka, L., "JSON Encoding of Data Modeled with YANG",

          RFC 7951, DOI 10.17487/RFC7951, August 2016,
          <https://www.rfc-editor.org/info/rfc7951>.

RFC8340 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

          BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
          <https://www.rfc-editor.org/info/rfc8340>.

RFC8484 Hoffman, P. and P. McManus, "DNS Queries over HTTPS

          (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
          <https://www.rfc-editor.org/info/rfc8484>.

RFC8489 Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing,

          D., Mahy, R., and P. Matthews, "Session Traversal
          Utilities for NAT (STUN)", RFC 8489, DOI 10.17487/RFC8489,
          February 2020, <https://www.rfc-editor.org/info/rfc8489>.

RFC8499 Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS

          Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
          January 2019, <https://www.rfc-editor.org/info/rfc8499>.

RFC8612 Mortensen, A., Reddy, T., and R. Moskowitz, "DDoS Open

          Threat Signaling (DOTS) Requirements", RFC 8612,
          DOI 10.17487/RFC8612, May 2019,
          <https://www.rfc-editor.org/info/rfc8612>.

RFC8783 Boucadair, M., Ed. and T. Reddy.K, Ed., "Distributed

          Denial-of-Service Open Threat Signaling (DOTS) Data
          Channel Specification", RFC 8783, DOI 10.17487/RFC8783,
          May 2020, <https://www.rfc-editor.org/info/rfc8783>.

Appendix A. CUID Generation

The document recommends the use of SPKI to generate the 'cuid'. This design choice is motivated by the following reasons:

  • SPKI is globally unique.
  • It is deterministic.
  • It allows the avoidance of extra cycles that may be induced by
  'cuid' collision.
  • DOTS clients do not need to store the 'cuid' in a persistent
  storage.
  • It allows the detection of compromised DOTS clients that do not
  adhere to the 'cuid' generation algorithm.

Acknowledgements

Thanks to Christian Jacquenet, Roland Dobbins, Roman Danyliw, Michael Richardson, Ehud Doron, Kaname Nishizuka, Dave Dolson, Liang Xia, Gilbert Clark, Xialiang Frank, Jim Schaad, Klaus Hartke, Nesredien Suleiman, Stephen Farrell, and Yoshifumi Nishida for the discussion and comments.

The authors would like to give special thanks to Kaname Nishizuka and Jon Shallow for their efforts in implementing the protocol and performing interop testing at IETF Hackathons.

Thanks to the core WG for the recommendations on Hop-Limit and redirect signaling.

Special thanks to Benjamin Kaduk for the detailed AD review.

Thanks to Alexey Melnikov, Adam Roach, Suresh Krishnan, Mirja Kühlewind, and Alissa Cooper for the review.

Thanks to Carsten Bormann for his review of the DOTS heartbeat mechanism.

Contributors

The following individuals have contributed to this document:

Jon Shallow NCC Group

Email: [email protected]

Mike Geller Cisco Systems, Inc. FL 33309 United States of America

Email: [email protected]

Robert Moskowitz HTT Consulting Oak Park, MI 42837 United States of America

Email: [email protected]

Dan Wing

Email: [email protected]

Authors' Addresses

Tirumaleswar Reddy.K (editor) McAfee, Inc. Embassy Golf Link Business Park Bangalore 560071 Karnataka India

Email: [email protected]

Mohamed Boucadair (editor) Orange 35000 Rennes France

Email: [email protected]

Prashanth Patil Cisco Systems, Inc.

Email: [email protected]

Andrew Mortensen Arbor Networks, Inc. 2727 S. State Street Ann Arbor, MI 48104 United States of America

Email: [email protected]

Nik Teague Iron Mountain Data Centers United Kingdom

Email: [email protected]