Difference between revisions of "RFC8762"

From RFC-Wiki
(Created page with " Internet Engineering Task Force (IETF) G. Mirsky Request for Comments: 8762 G. Jun Category: Standards Tr...")
 
Line 1: Line 1:
 

 

 
 
  
 
Internet Engineering Task Force (IETF)                        G. Mirsky
 
Internet Engineering Task Force (IETF)                        G. Mirsky
Line 7: Line 5:
 
Category: Standards Track                                      ZTE Corp.
 
Category: Standards Track                                      ZTE Corp.
 
ISSN: 2070-1721                                                H. Nydell
 
ISSN: 2070-1721                                                H. Nydell
                                                      Accedian Networks
+
                                                    Accedian Networks
                                                                R. Foote
+
                                                            R. Foote
                                                                  Nokia
+
                                                                Nokia
                                                              March 2020
+
                                                          March 2020
 
 
  
              Simple Two-Way Active Measurement Protocol
+
            Simple Two-Way Active Measurement Protocol
  
 
Abstract
 
Abstract
  
  This document describes the Simple Two-way Active Measurement
+
This document describes the Simple Two-way Active Measurement
  Protocol (STAMP), which enables the measurement of both one-way and
+
Protocol (STAMP), which enables the measurement of both one-way and
  round-trip performance metrics, like delay, delay variation, and
+
round-trip performance metrics, like delay, delay variation, and
  packet loss.
+
packet loss.
  
 
Status of This Memo
 
Status of This Memo
  
  This is an Internet Standards Track document.
+
This is an Internet Standards Track document.
  
  This document is a product of the Internet Engineering Task Force
+
This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
+
(IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
+
received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
+
Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.
+
Internet Standards is available in Section 2 of RFC 7841.
  
  Information about the current status of this document, any errata,
+
Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
+
and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8762.
+
https://www.rfc-editor.org/info/rfc8762.
  
 
Copyright Notice
 
Copyright Notice
  
  Copyright (c) 2020 IETF Trust and the persons identified as the
+
Copyright (c) 2020 IETF Trust and the persons identified as the
  document authors.  All rights reserved.
+
document authors.  All rights reserved.
  
  This document is subject to BCP 78 and the IETF Trust's Legal
+
This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
+
Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
+
(https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
+
publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
+
carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
+
to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
+
include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
+
the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.
+
described in the Simplified BSD License.
  
 
Table of Contents
 
Table of Contents
 
  1.  Introduction
 
  2.  Conventions Used in This Document
 
    2.1.  Terminology
 
    2.2.  Requirements Language
 
  3.  Operation and Management of Performance Measurement Based on
 
          STAMP
 
  4.  Theory of Operation
 
    4.1.  UDP Port Numbers in STAMP Testing
 
    4.2.  Session-Sender Behavior and Packet Format
 
      4.2.1.  Session-Sender Packet Format in Unauthenticated Mode
 
      4.2.2.  Session-Sender Packet Format in Authenticated Mode
 
    4.3.  Session-Reflector Behavior and Packet Format
 
      4.3.1.  Session-Reflector Packet Format in Unauthenticated Mode
 
      4.3.2.  Session-Reflector Packet Format in Authenticated Mode
 
    4.4.  Integrity Protection in STAMP
 
    4.5.  Confidentiality Protection in STAMP
 
    4.6.  Interoperability with TWAMP Light
 
  5.  Operational Considerations
 
  6.  IANA Considerations
 
  7.  Security Considerations
 
  8.  References
 
    8.1.  Normative References
 
    8.2.  Informative References
 
  Acknowledgments
 
  Authors' Addresses
 
  
 
1.  Introduction
 
1.  Introduction
 
  Development and deployment of the Two-Way Active Measurement Protocol
 
  (TWAMP) [RFC5357] and its extensions (e.g., [RFC6038], which defines
 
  Symmetrical Size for TWAMP) provided invaluable experience.  Several
 
  independent implementations of both TWAMP and TWAMP Light exist, have
 
  been deployed, and provide important operational performance
 
  measurements.
 
 
  At the same time, there has been noticeable interest in using a more
 
  straightforward mechanism for active performance monitoring that can
 
  provide deterministic behavior and inherent separation of control
 
  (vendor-specific configuration or orchestration) and test functions.
 
  Recent work on "Performance Measurement from IP Edge to Customer
 
  Equipment using TWAMP Light" [BBF.TR-390] by the Broadband Forum
 
  demonstrates that interoperability among implementations of TWAMP
 
  Light is difficult because the composition and operation of TWAMP
 
  Light were not sufficiently specified in [RFC5357].  According to
 
  [RFC8545], TWAMP Light includes a subset of TWAMP-Test functions.
 
  Thus, to have a comprehensive tool to measure packet loss and delay
 
  requires support by other applications that provide, for example,
 
  control and security.
 
 
  This document defines an active performance measurement test
 
  protocol, Simple Two-way Active Measurement Protocol (STAMP), that
 
  enables measurement of both one-way and round-trip performance
 
  metrics, like delay, delay variation, and packet loss.  Support of
 
  some optional TWAMP extensions, e.g., [RFC7750], is discussed in
 
  [STAMP-OPTION].
 
 
 
2.  Conventions Used in This Document
 
2.  Conventions Used in This Document
 +
  2.1.  Terminology
 +
  2.2.  Requirements Language
 +
3.  Operation and Management of Performance Measurement Based on
 +
        STAMP
 +
4.  Theory of Operation
 +
  4.1.  UDP Port Numbers in STAMP Testing
 +
  4.2.  Session-Sender Behavior and Packet Format
 +
    4.2.1.  Session-Sender Packet Format in Unauthenticated Mode
 +
    4.2.2.  Session-Sender Packet Format in Authenticated Mode
 +
  4.3.  Session-Reflector Behavior and Packet Format
 +
    4.3.1.  Session-Reflector Packet Format in Unauthenticated Mode
 +
    4.3.2.  Session-Reflector Packet Format in Authenticated Mode
 +
  4.4.  Integrity Protection in STAMP
 +
  4.5.  Confidentiality Protection in STAMP
 +
  4.6.  Interoperability with TWAMP Light
 +
5.  Operational Considerations
 +
6.  IANA Considerations
 +
7.  Security Considerations
 +
8.  References
 +
  8.1.  Normative References
 +
  8.2.  Informative References
 +
Acknowledgments
 +
Authors' Addresses
  
2.1.  Terminology
+
== Introduction ==
  
  STAMP:      Simple Two-way Active Measurement Protocol
+
Development and deployment of the Two-Way Active Measurement Protocol
 +
(TWAMP) [RFC5357] and its extensions (e.g., [RFC6038], which defines
 +
Symmetrical Size for TWAMP) provided invaluable experience.  Several
 +
independent implementations of both TWAMP and TWAMP Light exist, have
 +
been deployed, and provide important operational performance
 +
measurements.
  
  NTP:        Network Time Protocol
+
At the same time, there has been noticeable interest in using a more
 +
straightforward mechanism for active performance monitoring that can
 +
provide deterministic behavior and inherent separation of control
 +
(vendor-specific configuration or orchestration) and test functions.
 +
Recent work on "Performance Measurement from IP Edge to Customer
 +
Equipment using TWAMP Light" [BBF.TR-390] by the Broadband Forum
 +
demonstrates that interoperability among implementations of TWAMP
 +
Light is difficult because the composition and operation of TWAMP
 +
Light were not sufficiently specified in [RFC5357].  According to
 +
[RFC8545], TWAMP Light includes a subset of TWAMP-Test functions.
 +
Thus, to have a comprehensive tool to measure packet loss and delay
 +
requires support by other applications that provide, for example,
 +
control and security.
  
  PTP:        Precision Time Protocol
+
This document defines an active performance measurement test
 +
protocol, Simple Two-way Active Measurement Protocol (STAMP), that
 +
enables measurement of both one-way and round-trip performance
 +
metrics, like delay, delay variation, and packet loss.  Support of
 +
some optional TWAMP extensions, e.g., [RFC7750], is discussed in
 +
[STAMP-OPTION].
  
  HMAC:      Hashed Message Authentication Code
+
== Conventions Used in This Document ==
  
  OWAMP:      One-Way Active Measurement Protocol
+
=== Terminology ===
  
  TWAMP:      Two-Way Active Measurement Protocol
+
STAMP:      Simple Two-way Active Measurement Protocol
  
  MBZ:        Must be Zero
+
NTP:        Network Time Protocol
  
  PDU:        Protocol Data Unit
+
PTP:        Precision Time Protocol
  
2.2.  Requirements Language
+
HMAC:      Hashed Message Authentication Code
  
  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
+
OWAMP:      One-Way Active Measurement Protocol
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 
  "OPTIONAL" in this document are to be interpreted as described in
 
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 
  capitals, as shown here.
 
  
3.  Operation and Management of Performance Measurement Based on STAMP
+
TWAMP:      Two-Way Active Measurement Protocol
  
  Figure 1 presents the Simple Two-way Active Measurement Protocol
+
MBZ:        Must be Zero
  (STAMP) Session-Sender and Session-Reflector with a measurement
 
  session.  In this document, a measurement session, also referred to
 
  as a "STAMP session", is the bidirectional packet flow between one
 
  specific Session-Sender and one particular Session-Reflector for a
 
  time duration.  The configuration and management of the STAMP
 
  Session-Sender, Session-Reflector, and sessions are outside the scope
 
  of this document and can be achieved through various means.  A few
 
  examples are Command Line Interface, telecommunication services'
 
  Operational Support System (OSS) / Business Support System (BSS),
 
  SNMP, and NETCONF/YANG-based Software-Defined Networking (SDN)
 
  controllers.
 
  
        o----------------------------------------------------------o
+
PDU:        Protocol Data Unit
        |                      Configuration and                  |
 
        |                        Management                      |
 
        o----------------------------------------------------------o
 
                ||                                          ||
 
                ||                                          ||
 
                ||                                          ||
 
    +----------------------+                +-------------------------+
 
    | STAMP Session-Sender | <--- STAMP---> | STAMP Session-Reflector |
 
    +----------------------+                +-------------------------+
 
  
                      Figure 1: STAMP Reference Model
+
=== Requirements Language ===
  
4. Theory of Operation
+
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 +
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 +
"OPTIONAL" in this document are to be interpreted as described in
 +
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 +
capitals, as shown here.
  
  The STAMP Session-Sender transmits test packets over UDP transport
+
== Operation and Management of Performance Measurement Based on STAMP ==
  toward the STAMP Session-Reflector.  The STAMP Session-Reflector
 
  receives the Session-Sender's packet and acts according to the
 
  configuration.  Two modes of the STAMP Session-Reflector characterize
 
  the expected behavior and, consequently, performance metrics that can
 
  be measured:
 
  
  Stateless:
+
Figure 1 presents the Simple Two-way Active Measurement Protocol
      The STAMP Session-Reflector does not maintain test state and will
+
(STAMP) Session-Sender and Session-Reflector with a measurement
      use the value in the Sequence Number field in the received packet
+
session.  In this document, a measurement session, also referred to
      as the value for the Sequence Number field in the reflected
+
as a "STAMP session", is the bidirectional packet flow between one
      packetAs a result, values in the Sequence Number and Session-
+
specific Session-Sender and one particular Session-Reflector for a
      Sender Sequence Number fields are the same, and only round-trip
+
time durationThe configuration and management of the STAMP
      packet loss can be calculated while the reflector is operating in
+
Session-Sender, Session-Reflector, and sessions are outside the scope
      stateless mode.
+
of this document and can be achieved through various means.  A few
 +
examples are Command Line Interface, telecommunication services'
 +
Operational Support System (OSS) / Business Support System (BSS),
 +
SNMP, and NETCONF/YANG-based Software-Defined Networking (SDN)
 +
controllers.
  
  Stateful:
+
       o----------------------------------------------------------o
       STAMP Session-Reflector maintains the test state, thus allowing
+
       |                      Configuration and                  |
       the Session-Sender to determine directionality of loss using the
+
       |                        Management                      |
       combination of gaps recognized in the Session Sender Sequence
+
       o----------------------------------------------------------o
       Number and Sequence Number fields, respectively.  As a result,
+
            ||                                          ||
      both near-end (forward) and far-end (backward) packet loss can be
+
            ||                                          ||
      computed.  That implies that the STAMP Session-Reflector MUST
+
            ||                                          ||
      maintain a state for each configured STAMP-Test session, thereby
+
  +----------------------+                +-------------------------+
      uniquely associating STAMP-Test packets with one such session
+
  | STAMP Session-Sender | <--- STAMP---> | STAMP Session-Reflector |
      instance and, thus, enabling the addition of a sequence number in
+
  +----------------------+                +-------------------------+
      the test reply that is individually incremented by one on a per-
 
      session basis.
 
  
  STAMP supports two authentication modes: unauthenticated and
+
                  Figure 1: STAMP Reference Model
  authenticated.  Unauthenticated STAMP-Test packets, defined in
 
  Sections 4.2.1 and 4.3.1, ensure interworking between STAMP and TWAMP
 
  Light, as described in Section 4.6 regarding packet formats.
 
  
  By default, STAMP uses symmetrical packets, i.e., the size of the
+
== Theory of Operation ==
  packet transmitted by the Session-Reflector equals the size of the
 
  packet received by the Session-Reflector.
 
  
4.1UDP Port Numbers in STAMP Testing
+
The STAMP Session-Sender transmits test packets over UDP transport
 +
toward the STAMP Session-Reflector. The STAMP Session-Reflector
 +
receives the Session-Sender's packet and acts according to the
 +
configurationTwo modes of the STAMP Session-Reflector characterize
 +
the expected behavior and, consequently, performance metrics that can
 +
be measured:
  
   A STAMP Session-Sender MUST use UDP port 862 (TWAMP-Test Receiver
+
Stateless:
   Port) as the default destination UDP port number.  A STAMP
+
   The STAMP Session-Reflector does not maintain test state and will
   implementation of the Session-Sender MUST be able to be used as the
+
   use the value in the Sequence Number field in the received packet
  destination UDP port numbers from the User Ports (aka Registered
+
   as the value for the Sequence Number field in the reflected
  Ports) and Dynamic Ports (aka Private or Ephemeral Ports) ranges
+
   packetAs a result, values in the Sequence Number and Session-
   defined in [RFC6335]Before using numbers from the User Ports
+
   Sender Sequence Number fields are the same, and only round-trip
   range, the possible impact on the network MUST be carefully studied
+
   packet loss can be calculated while the reflector is operating in
   and agreed on by all users of the network domain where the test has
+
   stateless mode.
   been planned.
 
  
   By default, an implementation of the STAMP Session-Reflector MUST
+
Stateful:
   receive STAMP-Test packets on UDP port 862.  An implementation of the
+
   STAMP Session-Reflector maintains the test state, thus allowing
  Session-Reflector that supports this specification MUST be able to
+
   the Session-Sender to determine directionality of loss using the
   define the port number to receive STAMP-Test packets from User Ports
+
   combination of gaps recognized in the Session Sender Sequence
   and Dynamic Ports ranges, which are defined in [RFC6335]STAMP
+
   Number and Sequence Number fields, respectivelyAs a result,
   defines two different test packet formats: one for packets
+
   both near-end (forward) and far-end (backward) packet loss can be
   transmitted by the STAMP Session-Sender and one for packets
+
   computed.  That implies that the STAMP Session-Reflector MUST
   transmitted by the STAMP Session-Reflector.
+
  maintain a state for each configured STAMP-Test session, thereby
 +
  uniquely associating STAMP-Test packets with one such session
 +
  instance and, thus, enabling the addition of a sequence number in
 +
   the test reply that is individually incremented by one on a per-
 +
  session basis.
  
4.2. Session-Sender Behavior and Packet Format
+
STAMP supports two authentication modes: unauthenticated and
 +
authenticated.  Unauthenticated STAMP-Test packets, defined in
 +
Sections 4.2.1 and 4.3.1, ensure interworking between STAMP and TWAMP
 +
Light, as described in Section 4.6 regarding packet formats.
  
  A STAMP Session-Reflector supports the symmetrical size of test
+
By default, STAMP uses symmetrical packets, i.e., the size of the
  packets, as defined in Section 3 of [RFC6038], as the default
+
packet transmitted by the Session-Reflector equals the size of the
  behavior. A reflected base test packet includes information from the
+
packet received by the Session-Reflector.
  Session-Reflector and, thus, is larger. To maintain the symmetry
 
  between base STAMP packets, the base STAMP Session-Sender packet
 
  includes the Must-Be-Zero (MBZ) field to match to the size of a base
 
  reflected STAMP test packet.  Hence, the base STAMP Session-Sender
 
  packet has a minimum size of 44 octets in unauthenticated mode (see
 
  Figure 2) and 112 octets in the authenticated mode (see Figure 4).
 
  Generating variable length of a test packet in STAMP is defined in
 
  [STAMP-OPTION].
 
  
4.2.1.  Session-Sender Packet Format in Unauthenticated Mode
+
=== UDP Port Numbers in STAMP Testing ===
  
 +
A STAMP Session-Sender MUST use UDP port 862 (TWAMP-Test Receiver
 +
Port) as the default destination UDP port number.  A STAMP
 +
implementation of the Session-Sender MUST be able to be used as the
 +
destination UDP port numbers from the User Ports (aka Registered
 +
Ports) and Dynamic Ports (aka Private or Ephemeral Ports) ranges
 +
defined in [RFC6335].  Before using numbers from the User Ports
 +
range, the possible impact on the network MUST be carefully studied
 +
and agreed on by all users of the network domain where the test has
 +
been planned.
  
      0                  1                  2                  3
+
By default, an implementation of the STAMP Session-Reflector MUST
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+
receive STAMP-Test packets on UDP port 862.  An implementation of the
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
Session-Reflector that supports this specification MUST be able to
      |                        Sequence Number                        |
+
define the port number to receive STAMP-Test packets from User Ports
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
and Dynamic Ports ranges, which are defined in [RFC6335]. STAMP
      |                          Timestamp                            |
+
defines two different test packet formats: one for packets
      |                                                              |
+
transmitted by the STAMP Session-Sender and one for packets
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
transmitted by the STAMP Session-Reflector.
      |        Error Estimate        |                              |
 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              +
 
      |                                                              |
 
      |                                                              |
 
      |                        MBZ (30 octets)                      |
 
      |                                                              |
 
      |                                                              |
 
      |                                                              |
 
      |                                                              |
 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  
            Figure 2: STAMP Session-Sender Test Packet Format in
+
=== Session-Sender Behavior and Packet Format ===
                            Unauthenticated Mode
 
  
  The fields are defined as following:
+
A STAMP Session-Reflector supports the symmetrical size of test
 +
packets, as defined in Section 3 of [RFC6038], as the default
 +
behavior.  A reflected base test packet includes information from the
 +
Session-Reflector and, thus, is larger.  To maintain the symmetry
 +
between base STAMP packets, the base STAMP Session-Sender packet
 +
includes the Must-Be-Zero (MBZ) field to match to the size of a base
 +
reflected STAMP test packet.  Hence, the base STAMP Session-Sender
 +
packet has a minimum size of 44 octets in unauthenticated mode (see
 +
Figure 2) and 112 octets in the authenticated mode (see Figure 4).
 +
Generating variable length of a test packet in STAMP is defined in
 +
[STAMP-OPTION].
  
  *  The Sequence Number field is four octets long.  For each new
+
==== Session-Sender Packet Format in Unauthenticated Mode ====
      session, its value starts at zero and is incremented by one with
 
      each transmitted packet.
 
  
   *  The Timestamp field is eight octets long.  The STAMP node MUST
+
    0                  1                  2                  3
      support the Network Time Protocol (NTP) version 4 64-bit timestamp
+
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      format [RFC5905], the format used in [RFC5357]. The STAMP node
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      MAY support the IEEE 1588v2 Precision Time Protocol (PTP)
+
  |                        Sequence Number                        |
      truncated 64-bit timestamp format [IEEE.1588.2008], the format
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      used in [RFC8186].  The use of the specific format, NTP or PTP, is
+
   |                          Timestamp                           |
      part of configuration of the Session-Sender or the particular test
+
  |                                                              |
      session.
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
  |        Error Estimate        |                              |
 +
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              +
 +
  |                                                              |
 +
  |                                                              |
 +
  |                        MBZ (30 octets)                       |
 +
  |                                                              |
 +
  |                                                              |
 +
  |                                                              |
 +
  |                                                              |
 +
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
  *  The Error Estimate field is two octets long with the format
+
        Figure 2: STAMP Session-Sender Test Packet Format in
      displayed in Figure 3:
+
                        Unauthenticated Mode
  
              0                  1
+
The fields are defined as following:
              0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
              |S|Z|  Scale  |  Multiplier  |
 
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  
                      Figure 3: Error Estimate Format
+
*  The Sequence Number field is four octets long.  For each new
 +
  session, its value starts at zero and is incremented by one with
 +
  each transmitted packet.
  
      The S, Scale, and Multiplier fields are interpreted as they are
+
*  The Timestamp field is eight octets long.  The STAMP node MUST
      defined in Section 4.1.2 of [RFC4656].  The Z field is interpreted
+
  support the Network Time Protocol (NTP) version 4 64-bit timestamp
      as it is defined in Section 2.3 of [RFC8186]:
+
  format [RFC5905], the format used in [RFC5357].  The STAMP node
 +
  MAY support the IEEE 1588v2 Precision Time Protocol (PTP)
 +
  truncated 64-bit timestamp format [IEEE.1588.2008], the format
 +
  used in [RFC8186].  The use of the specific format, NTP or PTP, is
 +
  part of configuration of the Session-Sender or the particular test
 +
  session.
  
      0: NTP 64-bit format of a timestamp
+
* The Error Estimate field is two octets long with the format
 +
  displayed in Figure 3:
  
      1: PTPv2 truncated format of a timestamp
+
            0                  1
 +
            0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +
          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
          |S|Z|  Scale  |  Multiplier |
 +
          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
      The default behavior of the STAMP Session-Sender and Session-
+
                    Figure 3: Error Estimate Format
      Reflector is to use the NTP 64-bit timestamp format (Z field value
 
      of 0).  An operator using configuration/management function MAY
 
      configure the STAMP Session-Sender and Session-Reflector to use
 
      the PTPv2 truncated format of a timestamp (Z field value of 1).
 
      Note that an implementation of a Session-Sender that supports this
 
      specification MAY be configured to use the PTPv2 format of a
 
      timestamp even though the Session-Reflector is configured to use
 
      NTP format.
 
  
   * The MBZ field in the Session-Sender unauthenticated packet is 30
+
   The S, Scale, and Multiplier fields are interpreted as they are
      octets long.  It MUST be all zeroed on the transmission and MUST
+
  defined in Section 4.1.2 of [RFC4656]. The Z field is interpreted
      be ignored on receipt.
+
  as it is defined in Section 2.3 of [RFC8186]:
  
4.2.2. Session-Sender Packet Format in Authenticated Mode
+
  0: NTP 64-bit format of a timestamp
  
 +
  1:  PTPv2 truncated format of a timestamp
  
    0                  1                  2                  3
+
  The default behavior of the STAMP Session-Sender and Session-
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+
  Reflector is to use the NTP 64-bit timestamp format (Z field value
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  of 0).  An operator using configuration/management function MAY
    |                      Sequence Number                          |
+
  configure the STAMP Session-Sender and Session-Reflector to use
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  the PTPv2 truncated format of a timestamp (Z field value of 1).
    |                                                              |
+
  Note that an implementation of a Session-Sender that supports this
    |                      MBZ (12 octets)                         |
+
  specification MAY be configured to use the PTPv2 format of a
    |                                                              |
+
  timestamp even though the Session-Reflector is configured to use
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  NTP format.
    |                        Timestamp                              |
 
    |                                                              |
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
    |        Error Estimate        |                              |
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              +
 
    ~                                                              ~
 
    |                        MBZ (70 octets)                       |
 
    ~                                                              ~
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
    |                                                              |
 
    |                      HMAC (16 octets)                        |
 
    |                                                              |
 
    |                                                              |
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  
            Figure 4: STAMP Session-Sender Test Packet Format in
+
*  The MBZ field in the Session-Sender unauthenticated packet is 30
                            Authenticated Mode
+
  octets long.  It MUST be all zeroed on the transmission and MUST
 +
  be ignored on receipt.
  
  The field definitions are the same as the unauthenticated mode,
+
==== Session-Sender Packet Format in Authenticated Mode ====
  listed in Section 4.2.1.  Also, MBZ fields are used to make the
 
  packet length a multiple of 16 octets.  The value of the field MUST
 
  be zeroed on transmission and MUST be ignored on receipt.  Note, that
 
  both MBZ fields are used to calculate a key hashed message
 
  authentication code (HMAC) [RFC2104] hash.  Also, the packet includes
 
  an HMAC hash at the end of the PDU.  The detailed use of the HMAC
 
  field is described in Section 4.4.
 
  
4.3. Session-Reflector Behavior and Packet Format
+
  0                  1                  2                  3
 +
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      Sequence Number                          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                                                              |
 +
|                      MBZ (12 octets)                          |
 +
|                                                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        Timestamp                              |
 +
|                                                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|        Error Estimate        |                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              +
 +
~                                                              ~
 +
|                        MBZ (70 octets)                      |
 +
~                                                              ~
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                                                              |
 +
|                      HMAC (16 octets)                        |
 +
  |                                                              |
 +
|                                                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
  The Session-Reflector receives the STAMP-Test packet and verifies it.
+
        Figure 4: STAMP Session-Sender Test Packet Format in
  If the base STAMP-Test packet is validated, the Session-Reflector
+
                          Authenticated Mode
  that supports this specification prepares and transmits the reflected
 
  test packet symmetric to the packet received from the Session-Sender
 
  copying the content beyond the size of the base STAMP packet (see
 
  Section 4.2).
 
  
4.3.1.  Session-Reflector Packet Format in Unauthenticated Mode
+
The field definitions are the same as the unauthenticated mode,
 +
listed in Section 4.2.1.  Also, MBZ fields are used to make the
 +
packet length a multiple of 16 octets.  The value of the field MUST
 +
be zeroed on transmission and MUST be ignored on receipt.  Note, that
 +
both MBZ fields are used to calculate a key hashed message
 +
authentication code (HMAC) [RFC2104] hash.  Also, the packet includes
 +
an HMAC hash at the end of the PDU.  The detailed use of the HMAC
 +
field is described in Section 4.4.
  
 +
=== Session-Reflector Behavior and Packet Format ===
  
 +
The Session-Reflector receives the STAMP-Test packet and verifies it.
 +
If the base STAMP-Test packet is validated, the Session-Reflector
 +
that supports this specification prepares and transmits the reflected
 +
test packet symmetric to the packet received from the Session-Sender
 +
copying the content beyond the size of the base STAMP packet (see
 +
Section 4.2).
  
    0                  1                  2                  3
+
==== Session-Reflector Packet Format in Unauthenticated Mode ====
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
    |                        Sequence Number                        |
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
    |                          Timestamp                            |
 
    |                                                              |
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
    |        Error Estimate        |            MBZ                |
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
    |                          Receive Timestamp                    |
 
    |                                                              |
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
    |                Session-Sender Sequence Number                |
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
    |                  Session-Sender Timestamp                    |
 
    |                                                              |
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
    | Session-Sender Error Estimate |            MBZ                |
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
    |Ses-Sender TTL |                      MBZ                      |
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  
          Figure 5: STAMP Session-Reflector Test Packet Format in
+
  0                  1                  2                  3
                            Unauthenticated Mode
+
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        Sequence Number                        |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                          Timestamp                            |
 +
|                                                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|        Error Estimate        |            MBZ                |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                          Receive Timestamp                    |
 +
|                                                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                Session-Sender Sequence Number                |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                  Session-Sender Timestamp                    |
 +
|                                                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
| Session-Sender Error Estimate |            MBZ                |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|Ses-Sender TTL |                      MBZ                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
  Fields are defined as the following:
+
      Figure 5: STAMP Session-Reflector Test Packet Format in
 +
                        Unauthenticated Mode
  
  *  The Sequence Number field is four octets long.  The value of the
+
Fields are defined as the following:
      Sequence Number field is set according to the mode of the STAMP
 
      Session-Reflector:
 
  
      - In the stateless mode, the Session-Reflector copies the value
+
*  The Sequence Number field is four octets long. The value of the
        from the received STAMP-Test packet's Sequence Number field.
+
  Sequence Number field is set according to the mode of the STAMP
 +
  Session-Reflector:
  
      -  In the stateful mode, the Session-Reflector counts the
+
  -  In the stateless mode, the Session-Reflector copies the value
        transmitted STAMP-Test packets.  It starts with zero and is
+
      from the received STAMP-Test packet's Sequence Number field.
        incremented by one for each subsequent packet for each test
 
        session.  The Session-Reflector uses that counter to set the
 
        value of the Sequence Number field.
 
  
   * The Timestamp and Receive Timestamp fields are each eight octets
+
   - In the stateful mode, the Session-Reflector counts the
       longThe format of these fields, NTP or PTPv2, is indicated by
+
       transmitted STAMP-Test packetsIt starts with zero and is
       the Z field of the Error Estimate field, as described in
+
       incremented by one for each subsequent packet for each test
       Section 4.2.1Receive Timestamp is the time the test packet was
+
       sessionThe Session-Reflector uses that counter to set the
      received by the Session-Reflector.  Timestamp is the time taken by
+
       value of the Sequence Number field.
       the Session-Reflector at the start of transmitting the test
 
      packet.
 
  
   * The Error Estimate field has the same size and interpretation as
+
*  The Timestamp and Receive Timestamp fields are each eight octets
      described in Section 4.2.1.  It is applicable to both Timestamp
+
   long. The format of these fields, NTP or PTPv2, is indicated by
      and Receive Timestamp.
+
  the Z field of the Error Estimate field, as described in
 +
  Section 4.2.1.  Receive Timestamp is the time the test packet was
 +
  received by the Session-Reflector.  Timestamp is the time taken by
 +
  the Session-Reflector at the start of transmitting the test
 +
  packet.
  
  *  The Session-Sender Sequence Number, Session-Sender Timestamp, and
+
*  The Error Estimate field has the same size and interpretation as
      Session-Sender Error Estimate fields are copies of the
+
  described in Section 4.2.1.  It is applicable to both Timestamp
      corresponding fields in the STAMP-Test packet sent by the Session-
+
  and Receive Timestamp.
      Sender.
 
  
  *  The Session-Sender TTL field is one octet long, and its value is
+
*  The Session-Sender Sequence Number, Session-Sender Timestamp, and
      the copy of the TTL field in IPv4 (or Hop Limit in IPv6) from the
+
  Session-Sender Error Estimate fields are copies of the
      received STAMP-Test packet.
+
  corresponding fields in the STAMP-Test packet sent by the Session-
 +
  Sender.
  
  *  The MBZ fields are used to achieve alignment of fields within the
+
*  The Session-Sender TTL field is one octet long, and its value is
      packet on a four-octet boundary.  The value of each MBZ field MUST
+
  the copy of the TTL field in IPv4 (or Hop Limit in IPv6) from the
      be zeroed on transmission and MUST be ignored on receipt.
+
  received STAMP-Test packet.
  
4.3.2. Session-Reflector Packet Format in Authenticated Mode
+
*  The MBZ fields are used to achieve alignment of fields within the
 +
  packet on a four-octet boundary. The value of each MBZ field MUST
 +
  be zeroed on transmission and MUST be ignored on receipt.
  
 +
==== Session-Reflector Packet Format in Authenticated Mode ====
  
      0                  1                  2                  3
+
  0                  1                  2                  3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Sequence Number                        |
+
  |                        Sequence Number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        MBZ (12 octets)                        |
+
  |                        MBZ (12 octets)                        |
      |                                                              |
+
  |                                                              |
      |                                                              |
+
  |                                                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Timestamp                            |
+
  |                          Timestamp                            |
      |                                                              |
+
  |                                                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Error Estimate        |                              |
+
  |        Error Estimate        |                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              +
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              +
      |                        MBZ (6 octets)                        |
+
  |                        MBZ (6 octets)                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Receive Timestamp                      |
+
  |                        Receive Timestamp                      |
      |                                                              |
+
  |                                                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        MBZ (8 octets)                        |
+
  |                        MBZ (8 octets)                        |
      |                                                              |
+
  |                                                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Session-Sender Sequence Number                |
+
  |                Session-Sender Sequence Number                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        MBZ (12 octets)                        |
+
  |                        MBZ (12 octets)                        |
      |                                                              |
+
  |                                                              |
      |                                                              |
+
  |                                                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Session-Sender Timestamp                      |
+
  |                Session-Sender Timestamp                      |
      |                                                              |
+
  |                                                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Session-Sender Error Estimate |                              |
+
  | Session-Sender Error Estimate |                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              +
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              +
      |                        MBZ (6 octets)                        |
+
  |                        MBZ (6 octets)                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Ses-Sender TTL |                                              |
+
  |Ses-Sender TTL |                                              |
      +-+-+-+-+-+-+-+-+                                              +
+
  +-+-+-+-+-+-+-+-+                                              +
      |                                                              |
+
  |                                                              |
      |                        MBZ (15 octets)                        |
+
  |                        MBZ (15 octets)                        |
      |                                                              |
+
  |                                                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        HMAC (16 octets)                      |
+
  |                        HMAC (16 octets)                      |
      |                                                              |
+
  |                                                              |
      |                                                              |
+
  |                                                              |
      |                                                              |
+
  |                                                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
          Figure 6: STAMP Session-Reflector Test Packet Format in
+
      Figure 6: STAMP Session-Reflector Test Packet Format in
                            Authenticated Mode
+
                          Authenticated Mode
  
  The field definitions are the same as the unauthenticated mode,
+
The field definitions are the same as the unauthenticated mode,
  listed in Section 4.3.1.  Additionally, the MBZ field is used to make
+
listed in Section 4.3.1.  Additionally, the MBZ field is used to make
  the packet length a multiple of 16 octets.  The value of the field
+
the packet length a multiple of 16 octets.  The value of the field
  MUST be zeroed on transmission and MUST be ignored on receipt.  Note
+
MUST be zeroed on transmission and MUST be ignored on receipt.  Note
  that the MBZ field is used to calculate the HMAC hash value.  Also,
+
that the MBZ field is used to calculate the HMAC hash value.  Also,
  the STAMP Session-Reflector test packet format in authenticated mode
+
the STAMP Session-Reflector test packet format in authenticated mode
  includes the HMAC [RFC2104] hash at the end of the PDU.  The detailed
+
includes the HMAC [RFC2104] hash at the end of the PDU.  The detailed
  use of the HMAC field is in Section 4.4.
+
use of the HMAC field is in Section 4.4.
  
4.4.  Integrity Protection in STAMP
+
=== Integrity Protection in STAMP ===
  
  Authenticated mode provides integrity protection to each STAMP
+
Authenticated mode provides integrity protection to each STAMP
  message by adding Hashed Message Authentication Code (HMAC).  STAMP
+
message by adding Hashed Message Authentication Code (HMAC).  STAMP
  uses HMAC-SHA-256 truncated to 128 bits (similarly to the use of it
+
uses HMAC-SHA-256 truncated to 128 bits (similarly to the use of it
  in IPsec defined in [RFC4868]); hence, the length of the HMAC field
+
in IPsec defined in [RFC4868]); hence, the length of the HMAC field
  is 16 octets.  In the authenticated mode, HMAC covers the first six
+
is 16 octets.  In the authenticated mode, HMAC covers the first six
  blocks (96 octets).  HMAC uses its own key, which may be unique for
+
blocks (96 octets).  HMAC uses its own key, which may be unique for
  each STAMP-Test session; key management and the mechanisms to
+
each STAMP-Test session; key management and the mechanisms to
  distribute the HMAC key are outside the scope of this specification.
+
distribute the HMAC key are outside the scope of this specification.
  One example is to use an orchestrator to configure the HMAC key based
+
One example is to use an orchestrator to configure the HMAC key based
  on the STAMP YANG data model [STAMP-YANG].  HMAC MUST be verified as
+
on the STAMP YANG data model [STAMP-YANG].  HMAC MUST be verified as
  early as possible to avoid using or propagating corrupted data.
+
early as possible to avoid using or propagating corrupted data.
  
  Future specifications may define the use of other, more advanced
+
Future specifications may define the use of other, more advanced
  cryptographic algorithms, possibly providing an update to the STAMP
+
cryptographic algorithms, possibly providing an update to the STAMP
  YANG data model [STAMP-YANG].
+
YANG data model [STAMP-YANG].
  
4.5.  Confidentiality Protection in STAMP
+
=== Confidentiality Protection in STAMP ===
  
  If confidentiality protection for STAMP is required, a STAMP-Test
+
If confidentiality protection for STAMP is required, a STAMP-Test
  session MUST use a secured transport.  For example, STAMP packets
+
session MUST use a secured transport.  For example, STAMP packets
  could be transmitted in the dedicated IPsec tunnel or share the IPsec
+
could be transmitted in the dedicated IPsec tunnel or share the IPsec
  tunnel with the monitored flow.  Also, the Datagram Transport Layer
+
tunnel with the monitored flow.  Also, the Datagram Transport Layer
  Security protocol would provide the desired confidentiality
+
Security protocol would provide the desired confidentiality
  protection.
+
protection.
  
4.6.  Interoperability with TWAMP Light
+
=== Interoperability with TWAMP Light ===
  
  One of the essential requirements to STAMP is the ability to
+
One of the essential requirements to STAMP is the ability to
  interwork with a TWAMP Light device.  Because STAMP and TWAMP use
+
interwork with a TWAMP Light device.  Because STAMP and TWAMP use
  different algorithms in authenticated mode (HMAC-SHA-256 versus HMAC-
+
different algorithms in authenticated mode (HMAC-SHA-256 versus HMAC-
  SHA-1), interoperability is only considered for unauthenticated mode.
+
SHA-1), interoperability is only considered for unauthenticated mode.
  There are two possible combinations for such a use case:
+
There are two possible combinations for such a use case:
  
  *  STAMP Session-Sender with TWAMP Light Session-Reflector
+
*  STAMP Session-Sender with TWAMP Light Session-Reflector
  
  *  TWAMP Light Session-Sender with STAMP Session-Reflector
+
*  TWAMP Light Session-Sender with STAMP Session-Reflector
  
  In the former case, the Session-Sender might not be aware that its
+
In the former case, the Session-Sender might not be aware that its
  Session-Reflector does not support STAMP.  For example, a TWAMP Light
+
Session-Reflector does not support STAMP.  For example, a TWAMP Light
  Session-Reflector may not support the use of UDP port 862, as
+
Session-Reflector may not support the use of UDP port 862, as
  specified in [RFC8545].  Thus, Section 4 permits a STAMP Session-
+
specified in [RFC8545].  Thus, Section 4 permits a STAMP Session-
  Sender to use alternative ports.  If any of STAMP extensions are
+
Sender to use alternative ports.  If any of STAMP extensions are
  used, the TWAMP Light Session-Reflector will view them as the Packet
+
used, the TWAMP Light Session-Reflector will view them as the Packet
  Padding field.
+
Padding field.
  
  In the latter scenario, if a TWAMP Light Session-Sender does not
+
In the latter scenario, if a TWAMP Light Session-Sender does not
  support the use of UDP port 862, the test management system MUST set
+
support the use of UDP port 862, the test management system MUST set
  the STAMP Session-Reflector to use UDP port number, as permitted by
+
the STAMP Session-Reflector to use UDP port number, as permitted by
  Section 4.  The Session-Reflector MUST be set to use the default
+
Section 4.  The Session-Reflector MUST be set to use the default
  format for its timestamps, NTP.
+
format for its timestamps, NTP.
  
  A STAMP Session-Reflector that supports this specification will
+
A STAMP Session-Reflector that supports this specification will
  transmit the base packet (Figure 5) if it receives a packet smaller
+
transmit the base packet (Figure 5) if it receives a packet smaller
  than the STAMP base packet.  If the packet received from the TWAMP
+
than the STAMP base packet.  If the packet received from the TWAMP
  Session-Sender is larger than the STAMP base packet, the STAMP
+
Session-Sender is larger than the STAMP base packet, the STAMP
  Session-Reflector that supports this specification will copy the
+
Session-Reflector that supports this specification will copy the
  content of the remainder of the received packet to transmit a
+
content of the remainder of the received packet to transmit a
  reflected packet of symmetrical size.
+
reflected packet of symmetrical size.
  
5.  Operational Considerations
+
== Operational Considerations ==
  
  STAMP is intended to be used on production networks to enable the
+
STAMP is intended to be used on production networks to enable the
  operator to assess service level agreements based on packet delay,
+
operator to assess service level agreements based on packet delay,
  delay variation, and loss.  When using STAMP over the Internet,
+
delay variation, and loss.  When using STAMP over the Internet,
  especially when STAMP-Test packets are transmitted with the
+
especially when STAMP-Test packets are transmitted with the
  destination UDP port number from the User Ports range, the possible
+
destination UDP port number from the User Ports range, the possible
  impact of the STAMP-Test packets MUST be thoroughly analyzed.  The
+
impact of the STAMP-Test packets MUST be thoroughly analyzed.  The
  use of STAMP for each case MUST be agreed by users of nodes hosting
+
use of STAMP for each case MUST be agreed by users of nodes hosting
  the Session-Sender and Session-Reflector before starting the STAMP-
+
the Session-Sender and Session-Reflector before starting the STAMP-
  Test session.
+
Test session.
  
  Also, the use of the well-known port number as the destination UDP
+
Also, the use of the well-known port number as the destination UDP
  port number in STAMP-Test packets transmitted by a Session-Sender
+
port number in STAMP-Test packets transmitted by a Session-Sender
  would not impede the ability to measure performance in an Equal-Cost
+
would not impede the ability to measure performance in an Equal-Cost
  Multipath environment, and analysis in Section 5.3 of [RFC8545] fully
+
Multipath environment, and analysis in Section 5.3 of [RFC8545] fully
  applies to STAMP.
+
applies to STAMP.
  
6.  IANA Considerations
+
== IANA Considerations ==
  
  This document has no IANA actions.
+
This document has no IANA actions.
  
7.  Security Considerations
+
== Security Considerations ==
  
  [RFC5357] does not identify security considerations specific to
+
[RFC5357] does not identify security considerations specific to
  TWAMP-Test but refers to security considerations identified for OWAMP
+
TWAMP-Test but refers to security considerations identified for OWAMP
  in [RFC4656].  Since both OWAMP and TWAMP include control-plane and
+
in [RFC4656].  Since both OWAMP and TWAMP include control-plane and
  data-plane components, only security considerations related to OWAMP-
+
data-plane components, only security considerations related to OWAMP-
  Test discussed in Sections 6.2 and 6.3 of [RFC4656] apply to STAMP.
+
Test discussed in Sections 6.2 and 6.3 of [RFC4656] apply to STAMP.
  
  STAMP uses the well-known UDP port number allocated for the OWAMP-
+
STAMP uses the well-known UDP port number allocated for the OWAMP-
  Test/TWAMP-Test Receiver Port.  Thus, the security considerations and
+
Test/TWAMP-Test Receiver Port.  Thus, the security considerations and
  measures to mitigate the risk of the attack using the registered port
+
measures to mitigate the risk of the attack using the registered port
  number documented in Section 6 of [RFC8545] equally apply to STAMP.
+
number documented in Section 6 of [RFC8545] equally apply to STAMP.
  Because of the control and management of a STAMP-Test being outside
+
Because of the control and management of a STAMP-Test being outside
  the scope of this specification, only the more general requirement is
+
the scope of this specification, only the more general requirement is
  set:
+
set:
  
      To mitigate the possible attack vector, the control and management
+
  To mitigate the possible attack vector, the control and management
      of a STAMP-Test session MUST use the secured transport.
+
  of a STAMP-Test session MUST use the secured transport.
  
      The load of the STAMP-Test packets offered to a network MUST be
+
  The load of the STAMP-Test packets offered to a network MUST be
      carefully estimated, and the possible impact on the existing
+
  carefully estimated, and the possible impact on the existing
      services MUST be thoroughly analyzed before launching the test
+
  services MUST be thoroughly analyzed before launching the test
      session.  Section 3.1.5 of [RFC8085] provides guidance on handling
+
  session.  Section 3.1.5 of [RFC8085] provides guidance on handling
      network load for UDP-based protocol.  While the characteristic of
+
  network load for UDP-based protocol.  While the characteristic of
      test traffic depends on the test objective, it is highly
+
  test traffic depends on the test objective, it is highly
      recommended to stay in the limits, as provided in [RFC8085].
+
  recommended to stay in the limits, as provided in [RFC8085].
  
  Use of HMAC-SHA-256 in the authenticated mode protects the data
+
Use of HMAC-SHA-256 in the authenticated mode protects the data
  integrity of the STAMP-Test packets.
+
integrity of the STAMP-Test packets.
  
8.  References
+
== References ==
  
8.1.  Normative References
+
=== Normative References ===
  
  [IEEE.1588.2008]
+
[IEEE.1588.2008]
              IEEE, "IEEE Standard for a Precision Clock Synchronization
+
          IEEE, "IEEE Standard for a Precision Clock Synchronization
              Protocol for Networked Measurement and Control Systems",
+
          Protocol for Networked Measurement and Control Systems",
              IEEE Standard 1588, July 2008.
+
          IEEE Standard 1588, July 2008.
  
  [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
+
[RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
              Hashing for Message Authentication", RFC 2104,
+
          Hashing for Message Authentication", RFC 2104,
              DOI 10.17487/RFC2104, February 1997,
+
          DOI 10.17487/RFC2104, February 1997,
              <https://www.rfc-editor.org/info/rfc2104>.
+
          <https://www.rfc-editor.org/info/rfc2104>.
  
  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
+
[RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
+
          Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
+
          DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.
+
          <https://www.rfc-editor.org/info/rfc2119>.
  
  [RFC4656]  Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
+
[RFC4656]  Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
              Zekauskas, "A One-way Active Measurement Protocol
+
          Zekauskas, "A One-way Active Measurement Protocol
              (OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006,
+
          (OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006,
              <https://www.rfc-editor.org/info/rfc4656>.
+
          <https://www.rfc-editor.org/info/rfc4656>.
  
  [RFC5357]  Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
+
[RFC5357]  Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
              Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
+
          Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
              RFC 5357, DOI 10.17487/RFC5357, October 2008,
+
          RFC 5357, DOI 10.17487/RFC5357, October 2008,
              <https://www.rfc-editor.org/info/rfc5357>.
+
          <https://www.rfc-editor.org/info/rfc5357>.
  
  [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
+
[RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
+
          "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
+
          Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
              <https://www.rfc-editor.org/info/rfc5905>.
+
          <https://www.rfc-editor.org/info/rfc5905>.
  
  [RFC6038]  Morton, A. and L. Ciavattone, "Two-Way Active Measurement
+
[RFC6038]  Morton, A. and L. Ciavattone, "Two-Way Active Measurement
              Protocol (TWAMP) Reflect Octets and Symmetrical Size
+
          Protocol (TWAMP) Reflect Octets and Symmetrical Size
              Features", RFC 6038, DOI 10.17487/RFC6038, October 2010,
+
          Features", RFC 6038, DOI 10.17487/RFC6038, October 2010,
              <https://www.rfc-editor.org/info/rfc6038>.
+
          <https://www.rfc-editor.org/info/rfc6038>.
  
  [RFC6335]  Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
+
[RFC6335]  Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
              Cheshire, "Internet Assigned Numbers Authority (IANA)
+
          Cheshire, "Internet Assigned Numbers Authority (IANA)
              Procedures for the Management of the Service Name and
+
          Procedures for the Management of the Service Name and
              Transport Protocol Port Number Registry", BCP 165,
+
          Transport Protocol Port Number Registry", BCP 165,
              RFC 6335, DOI 10.17487/RFC6335, August 2011,
+
          RFC 6335, DOI 10.17487/RFC6335, August 2011,
              <https://www.rfc-editor.org/info/rfc6335>.
+
          <https://www.rfc-editor.org/info/rfc6335>.
  
  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
+
[RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
+
          2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.
+
          May 2017, <https://www.rfc-editor.org/info/rfc8174>.
  
  [RFC8186]  Mirsky, G. and I. Meilik, "Support of the IEEE 1588
+
[RFC8186]  Mirsky, G. and I. Meilik, "Support of the IEEE 1588
              Timestamp Format in a Two-Way Active Measurement Protocol
+
          Timestamp Format in a Two-Way Active Measurement Protocol
              (TWAMP)", RFC 8186, DOI 10.17487/RFC8186, June 2017,
+
          (TWAMP)", RFC 8186, DOI 10.17487/RFC8186, June 2017,
              <https://www.rfc-editor.org/info/rfc8186>.
+
          <https://www.rfc-editor.org/info/rfc8186>.
  
  [RFC8545]  Morton, A., Ed. and G. Mirsky, Ed., "Well-Known Port
+
[RFC8545]  Morton, A., Ed. and G. Mirsky, Ed., "Well-Known Port
              Assignments for the One-Way Active Measurement Protocol
+
          Assignments for the One-Way Active Measurement Protocol
              (OWAMP) and the Two-Way Active Measurement Protocol
+
          (OWAMP) and the Two-Way Active Measurement Protocol
              (TWAMP)", RFC 8545, DOI 10.17487/RFC8545, March 2019,
+
          (TWAMP)", RFC 8545, DOI 10.17487/RFC8545, March 2019,
              <https://www.rfc-editor.org/info/rfc8545>.
+
          <https://www.rfc-editor.org/info/rfc8545>.
  
8.2.  Informative References
+
=== Informative References ===
  
  [BBF.TR-390]
+
[BBF.TR-390]
              Broadband Forum, "Performance Measurement from IP Edge to
+
          Broadband Forum, "Performance Measurement from IP Edge to
              Customer Equipment using TWAMP Light", TR-390 Issue 1, May
+
          Customer Equipment using TWAMP Light", TR-390 Issue 1, May
              2017.
+
          2017.
  
  [RFC4868]  Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
+
[RFC4868]  Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
              384, and HMAC-SHA-512 with IPsec", RFC 4868,
+
          384, and HMAC-SHA-512 with IPsec", RFC 4868,
              DOI 10.17487/RFC4868, May 2007,
+
          DOI 10.17487/RFC4868, May 2007,
              <https://www.rfc-editor.org/info/rfc4868>.
+
          <https://www.rfc-editor.org/info/rfc4868>.
  
  [RFC7750]  Hedin, J., Mirsky, G., and S. Baillargeon, "Differentiated
+
[RFC7750]  Hedin, J., Mirsky, G., and S. Baillargeon, "Differentiated
              Service Code Point and Explicit Congestion Notification
+
          Service Code Point and Explicit Congestion Notification
              Monitoring in the Two-Way Active Measurement Protocol
+
          Monitoring in the Two-Way Active Measurement Protocol
              (TWAMP)", RFC 7750, DOI 10.17487/RFC7750, February 2016,
+
          (TWAMP)", RFC 7750, DOI 10.17487/RFC7750, February 2016,
              <https://www.rfc-editor.org/info/rfc7750>.
+
          <https://www.rfc-editor.org/info/rfc7750>.
  
  [RFC8085]  Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
+
[RFC8085]  Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
              Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
+
          Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
              March 2017, <https://www.rfc-editor.org/info/rfc8085>.
+
          March 2017, <https://www.rfc-editor.org/info/rfc8085>.
  
  [STAMP-OPTION]
+
[STAMP-OPTION]
              Mirsky, G., Xiao, M., Nydell, H., Foote, R., Masputra, A.,
+
          Mirsky, G., Xiao, M., Nydell, H., Foote, R., Masputra, A.,
              and E. Ruffini, "Simple Two-way Active Measurement
+
          and E. Ruffini, "Simple Two-way Active Measurement
              Protocol Optional Extensions", Work in Progress, Internet-
+
          Protocol Optional Extensions", Work in Progress, Internet-
              Draft, draft-ietf-ippm-stamp-option-tlv-03, 21 February
+
          Draft, draft-ietf-ippm-stamp-option-tlv-03, 21 February
              2020, <https://tools.ietf.org/html/draft-ietf-ippm-stamp-
+
          2020, <https://tools.ietf.org/html/draft-ietf-ippm-stamp-
              option-tlv-03>.
+
          option-tlv-03>.
  
  [STAMP-YANG]
+
[STAMP-YANG]
              Mirsky, G., Xiao, M., and W. Luo, "Simple Two-way Active
+
          Mirsky, G., Xiao, M., and W. Luo, "Simple Two-way Active
              Measurement Protocol (STAMP) Data Model", Work in
+
          Measurement Protocol (STAMP) Data Model", Work in
              Progress, Internet-Draft, draft-ietf-ippm-stamp-yang-05,
+
          Progress, Internet-Draft, draft-ietf-ippm-stamp-yang-05,
              25 October 2019, <https://tools.ietf.org/html/draft-ietf-
+
          25 October 2019, <https://tools.ietf.org/html/draft-ietf-
              ippm-stamp-yang-05>.
+
          ippm-stamp-yang-05>.
  
 
Acknowledgments
 
Acknowledgments
  
  The authors express their appreciation to Jose Ignacio Alvarez-
+
The authors express their appreciation to Jose Ignacio Alvarez-
  Hamelin and Brian Weis for their great insights into the security and
+
Hamelin and Brian Weis for their great insights into the security and
  identity protection as well as the most helpful and practical
+
identity protection as well as the most helpful and practical
  suggestions.  Also, our sincere thanks to David Ball, Rakesh Gandhi,
+
suggestions.  Also, our sincere thanks to David Ball, Rakesh Gandhi,
  and Xiao Min for their thorough reviews and helpful comments.
+
and Xiao Min for their thorough reviews and helpful comments.
  
 
Authors' Addresses
 
Authors' Addresses
  
  Greg Mirsky
+
Greg Mirsky
  ZTE Corp.
+
ZTE Corp.
 
 
 
 
 
 
 
  Guo Jun
 
  ZTE Corp.
 
  68# Zijinghua Road
 
  Nanjing
 
  Jiangsu, 210012
 
  China
 
  
  Phone: +86 18105183663
+
Email: gregimirsky@gmail.com
  Email: guo.jun2@zte.com.cn
 
  
 +
Guo Jun
 +
ZTE Corp.
 +
68# Zijinghua Road
 +
Nanjing
 +
Jiangsu, 210012
 +
China
  
  Henrik Nydell
+
Phone: +86 18105183663
  Accedian Networks
+
  
+
Henrik Nydell
 +
Accedian Networks
  
 +
  
  Richard Foote
+
Richard Foote
  Nokia
+
Nokia
  
+

Revision as of 12:55, 27 September 2020



Internet Engineering Task Force (IETF) G. Mirsky Request for Comments: 8762 G. Jun Category: Standards Track ZTE Corp. ISSN: 2070-1721 H. Nydell

                                                   Accedian Networks
                                                            R. Foote
                                                               Nokia
                                                          March 2020
           Simple Two-Way Active Measurement Protocol

Abstract

This document describes the Simple Two-way Active Measurement Protocol (STAMP), which enables the measurement of both one-way and round-trip performance metrics, like delay, delay variation, and packet loss.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8762.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction 2. Conventions Used in This Document

 2.1.  Terminology
 2.2.  Requirements Language

3. Operation and Management of Performance Measurement Based on

       STAMP

4. Theory of Operation

 4.1.  UDP Port Numbers in STAMP Testing
 4.2.  Session-Sender Behavior and Packet Format
   4.2.1.  Session-Sender Packet Format in Unauthenticated Mode
   4.2.2.  Session-Sender Packet Format in Authenticated Mode
 4.3.  Session-Reflector Behavior and Packet Format
   4.3.1.  Session-Reflector Packet Format in Unauthenticated Mode
   4.3.2.  Session-Reflector Packet Format in Authenticated Mode
 4.4.  Integrity Protection in STAMP
 4.5.  Confidentiality Protection in STAMP
 4.6.  Interoperability with TWAMP Light

5. Operational Considerations 6. IANA Considerations 7. Security Considerations 8. References

 8.1.  Normative References
 8.2.  Informative References

Acknowledgments Authors' Addresses

Introduction

Development and deployment of the Two-Way Active Measurement Protocol (TWAMP) [RFC5357] and its extensions (e.g., [RFC6038], which defines Symmetrical Size for TWAMP) provided invaluable experience. Several independent implementations of both TWAMP and TWAMP Light exist, have been deployed, and provide important operational performance measurements.

At the same time, there has been noticeable interest in using a more straightforward mechanism for active performance monitoring that can provide deterministic behavior and inherent separation of control (vendor-specific configuration or orchestration) and test functions. Recent work on "Performance Measurement from IP Edge to Customer Equipment using TWAMP Light" [BBF.TR-390] by the Broadband Forum demonstrates that interoperability among implementations of TWAMP Light is difficult because the composition and operation of TWAMP Light were not sufficiently specified in [RFC5357]. According to [RFC8545], TWAMP Light includes a subset of TWAMP-Test functions. Thus, to have a comprehensive tool to measure packet loss and delay requires support by other applications that provide, for example, control and security.

This document defines an active performance measurement test protocol, Simple Two-way Active Measurement Protocol (STAMP), that enables measurement of both one-way and round-trip performance metrics, like delay, delay variation, and packet loss. Support of some optional TWAMP extensions, e.g., [RFC7750], is discussed in [STAMP-OPTION].

Conventions Used in This Document

Terminology

STAMP: Simple Two-way Active Measurement Protocol

NTP: Network Time Protocol

PTP: Precision Time Protocol

HMAC: Hashed Message Authentication Code

OWAMP: One-Way Active Measurement Protocol

TWAMP: Two-Way Active Measurement Protocol

MBZ: Must be Zero

PDU: Protocol Data Unit

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Operation and Management of Performance Measurement Based on STAMP

Figure 1 presents the Simple Two-way Active Measurement Protocol (STAMP) Session-Sender and Session-Reflector with a measurement session. In this document, a measurement session, also referred to as a "STAMP session", is the bidirectional packet flow between one specific Session-Sender and one particular Session-Reflector for a time duration. The configuration and management of the STAMP Session-Sender, Session-Reflector, and sessions are outside the scope of this document and can be achieved through various means. A few examples are Command Line Interface, telecommunication services' Operational Support System (OSS) / Business Support System (BSS), SNMP, and NETCONF/YANG-based Software-Defined Networking (SDN) controllers.

     o----------------------------------------------------------o
     |                      Configuration and                   |
     |                         Management                       |
     o----------------------------------------------------------o
            ||                                          ||
            ||                                          ||
            ||                                          ||
 +----------------------+                +-------------------------+
 | STAMP Session-Sender | <--- STAMP---> | STAMP Session-Reflector |
 +----------------------+                +-------------------------+
                  Figure 1: STAMP Reference Model

Theory of Operation

The STAMP Session-Sender transmits test packets over UDP transport toward the STAMP Session-Reflector. The STAMP Session-Reflector receives the Session-Sender's packet and acts according to the configuration. Two modes of the STAMP Session-Reflector characterize the expected behavior and, consequently, performance metrics that can be measured:

Stateless:

  The STAMP Session-Reflector does not maintain test state and will
  use the value in the Sequence Number field in the received packet
  as the value for the Sequence Number field in the reflected
  packet.  As a result, values in the Sequence Number and Session-
  Sender Sequence Number fields are the same, and only round-trip
  packet loss can be calculated while the reflector is operating in
  stateless mode.

Stateful:

  STAMP Session-Reflector maintains the test state, thus allowing
  the Session-Sender to determine directionality of loss using the
  combination of gaps recognized in the Session Sender Sequence
  Number and Sequence Number fields, respectively.  As a result,
  both near-end (forward) and far-end (backward) packet loss can be
  computed.  That implies that the STAMP Session-Reflector MUST
  maintain a state for each configured STAMP-Test session, thereby
  uniquely associating STAMP-Test packets with one such session
  instance and, thus, enabling the addition of a sequence number in
  the test reply that is individually incremented by one on a per-
  session basis.

STAMP supports two authentication modes: unauthenticated and authenticated. Unauthenticated STAMP-Test packets, defined in Sections 4.2.1 and 4.3.1, ensure interworking between STAMP and TWAMP Light, as described in Section 4.6 regarding packet formats.

By default, STAMP uses symmetrical packets, i.e., the size of the packet transmitted by the Session-Reflector equals the size of the packet received by the Session-Reflector.

UDP Port Numbers in STAMP Testing

A STAMP Session-Sender MUST use UDP port 862 (TWAMP-Test Receiver Port) as the default destination UDP port number. A STAMP implementation of the Session-Sender MUST be able to be used as the destination UDP port numbers from the User Ports (aka Registered Ports) and Dynamic Ports (aka Private or Ephemeral Ports) ranges defined in [RFC6335]. Before using numbers from the User Ports range, the possible impact on the network MUST be carefully studied and agreed on by all users of the network domain where the test has been planned.

By default, an implementation of the STAMP Session-Reflector MUST receive STAMP-Test packets on UDP port 862. An implementation of the Session-Reflector that supports this specification MUST be able to define the port number to receive STAMP-Test packets from User Ports and Dynamic Ports ranges, which are defined in [RFC6335]. STAMP defines two different test packet formats: one for packets transmitted by the STAMP Session-Sender and one for packets transmitted by the STAMP Session-Reflector.

Session-Sender Behavior and Packet Format

A STAMP Session-Reflector supports the symmetrical size of test packets, as defined in Section 3 of [RFC6038], as the default behavior. A reflected base test packet includes information from the Session-Reflector and, thus, is larger. To maintain the symmetry between base STAMP packets, the base STAMP Session-Sender packet includes the Must-Be-Zero (MBZ) field to match to the size of a base reflected STAMP test packet. Hence, the base STAMP Session-Sender packet has a minimum size of 44 octets in unauthenticated mode (see Figure 2) and 112 octets in the authenticated mode (see Figure 4). Generating variable length of a test packet in STAMP is defined in [STAMP-OPTION].

Session-Sender Packet Format in Unauthenticated Mode

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Sequence Number                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Timestamp                            |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Error Estimate        |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  |                                                               |
  |                                                               |
  |                        MBZ  (30 octets)                       |
  |                                                               |
  |                                                               |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        Figure 2: STAMP Session-Sender Test Packet Format in
                        Unauthenticated Mode

The fields are defined as following:

  • The Sequence Number field is four octets long. For each new
  session, its value starts at zero and is incremented by one with
  each transmitted packet.
  • The Timestamp field is eight octets long. The STAMP node MUST
  support the Network Time Protocol (NTP) version 4 64-bit timestamp
  format [RFC5905], the format used in [RFC5357].  The STAMP node
  MAY support the IEEE 1588v2 Precision Time Protocol (PTP)
  truncated 64-bit timestamp format [IEEE.1588.2008], the format
  used in [RFC8186].  The use of the specific format, NTP or PTP, is
  part of configuration of the Session-Sender or the particular test
  session.
  • The Error Estimate field is two octets long with the format
  displayed in Figure 3:
           0                   1
           0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
          |S|Z|   Scale   |   Multiplier  |
          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                   Figure 3: Error Estimate Format
  The S, Scale, and Multiplier fields are interpreted as they are
  defined in Section 4.1.2 of [RFC4656].  The Z field is interpreted
  as it is defined in Section 2.3 of [RFC8186]:
  0:  NTP 64-bit format of a timestamp
  1:  PTPv2 truncated format of a timestamp
  The default behavior of the STAMP Session-Sender and Session-
  Reflector is to use the NTP 64-bit timestamp format (Z field value
  of 0).  An operator using configuration/management function MAY
  configure the STAMP Session-Sender and Session-Reflector to use
  the PTPv2 truncated format of a timestamp (Z field value of 1).
  Note that an implementation of a Session-Sender that supports this
  specification MAY be configured to use the PTPv2 format of a
  timestamp even though the Session-Reflector is configured to use
  NTP format.
  • The MBZ field in the Session-Sender unauthenticated packet is 30
  octets long.  It MUST be all zeroed on the transmission and MUST
  be ignored on receipt.

Session-Sender Packet Format in Authenticated Mode

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      Sequence Number                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                      MBZ (12 octets)                          |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Timestamp                              |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|        Error Estimate         |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
~                                                               ~
|                         MBZ (70 octets)                       |
~                                                               ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                       HMAC (16 octets)                        |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        Figure 4: STAMP Session-Sender Test Packet Format in
                         Authenticated Mode

The field definitions are the same as the unauthenticated mode, listed in Section 4.2.1. Also, MBZ fields are used to make the packet length a multiple of 16 octets. The value of the field MUST be zeroed on transmission and MUST be ignored on receipt. Note, that both MBZ fields are used to calculate a key hashed message authentication code (HMAC) [RFC2104] hash. Also, the packet includes an HMAC hash at the end of the PDU. The detailed use of the HMAC field is described in Section 4.4.

Session-Reflector Behavior and Packet Format

The Session-Reflector receives the STAMP-Test packet and verifies it. If the base STAMP-Test packet is validated, the Session-Reflector that supports this specification prepares and transmits the reflected test packet symmetric to the packet received from the Session-Sender copying the content beyond the size of the base STAMP packet (see Section 4.2).

Session-Reflector Packet Format in Unauthenticated Mode

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Sequence Number                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          Timestamp                            |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         Error Estimate        |            MBZ                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          Receive Timestamp                    |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                 Session-Sender Sequence Number                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                  Session-Sender Timestamp                     |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session-Sender Error Estimate |            MBZ                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Ses-Sender TTL |                      MBZ                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      Figure 5: STAMP Session-Reflector Test Packet Format in
                        Unauthenticated Mode

Fields are defined as the following:

  • The Sequence Number field is four octets long. The value of the
  Sequence Number field is set according to the mode of the STAMP
  Session-Reflector:
  -  In the stateless mode, the Session-Reflector copies the value
     from the received STAMP-Test packet's Sequence Number field.
  -  In the stateful mode, the Session-Reflector counts the
     transmitted STAMP-Test packets.  It starts with zero and is
     incremented by one for each subsequent packet for each test
     session.  The Session-Reflector uses that counter to set the
     value of the Sequence Number field.
  • The Timestamp and Receive Timestamp fields are each eight octets
  long.  The format of these fields, NTP or PTPv2, is indicated by
  the Z field of the Error Estimate field, as described in
  Section 4.2.1.  Receive Timestamp is the time the test packet was
  received by the Session-Reflector.  Timestamp is the time taken by
  the Session-Reflector at the start of transmitting the test
  packet.
  • The Error Estimate field has the same size and interpretation as
  described in Section 4.2.1.  It is applicable to both Timestamp
  and Receive Timestamp.
  • The Session-Sender Sequence Number, Session-Sender Timestamp, and
  Session-Sender Error Estimate fields are copies of the
  corresponding fields in the STAMP-Test packet sent by the Session-
  Sender.
  • The Session-Sender TTL field is one octet long, and its value is
  the copy of the TTL field in IPv4 (or Hop Limit in IPv6) from the
  received STAMP-Test packet.
  • The MBZ fields are used to achieve alignment of fields within the
  packet on a four-octet boundary.  The value of each MBZ field MUST
  be zeroed on transmission and MUST be ignored on receipt.

Session-Reflector Packet Format in Authenticated Mode

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Sequence Number                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        MBZ (12 octets)                        |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Timestamp                            |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Error Estimate        |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  |                        MBZ (6 octets)                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Receive Timestamp                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        MBZ (8 octets)                         |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Session-Sender Sequence Number                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        MBZ (12 octets)                        |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Session-Sender Timestamp                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Session-Sender Error Estimate |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  |                        MBZ (6 octets)                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Ses-Sender TTL |                                               |
  +-+-+-+-+-+-+-+-+                                               +
  |                                                               |
  |                        MBZ (15 octets)                        |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        HMAC (16 octets)                       |
  |                                                               |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      Figure 6: STAMP Session-Reflector Test Packet Format in
                         Authenticated Mode

The field definitions are the same as the unauthenticated mode, listed in Section 4.3.1. Additionally, the MBZ field is used to make the packet length a multiple of 16 octets. The value of the field MUST be zeroed on transmission and MUST be ignored on receipt. Note that the MBZ field is used to calculate the HMAC hash value. Also, the STAMP Session-Reflector test packet format in authenticated mode includes the HMAC [RFC2104] hash at the end of the PDU. The detailed use of the HMAC field is in Section 4.4.

Integrity Protection in STAMP

Authenticated mode provides integrity protection to each STAMP message by adding Hashed Message Authentication Code (HMAC). STAMP uses HMAC-SHA-256 truncated to 128 bits (similarly to the use of it in IPsec defined in [RFC4868]); hence, the length of the HMAC field is 16 octets. In the authenticated mode, HMAC covers the first six blocks (96 octets). HMAC uses its own key, which may be unique for each STAMP-Test session; key management and the mechanisms to distribute the HMAC key are outside the scope of this specification. One example is to use an orchestrator to configure the HMAC key based on the STAMP YANG data model [STAMP-YANG]. HMAC MUST be verified as early as possible to avoid using or propagating corrupted data.

Future specifications may define the use of other, more advanced cryptographic algorithms, possibly providing an update to the STAMP YANG data model [STAMP-YANG].

Confidentiality Protection in STAMP

If confidentiality protection for STAMP is required, a STAMP-Test session MUST use a secured transport. For example, STAMP packets could be transmitted in the dedicated IPsec tunnel or share the IPsec tunnel with the monitored flow. Also, the Datagram Transport Layer Security protocol would provide the desired confidentiality protection.

Interoperability with TWAMP Light

One of the essential requirements to STAMP is the ability to interwork with a TWAMP Light device. Because STAMP and TWAMP use different algorithms in authenticated mode (HMAC-SHA-256 versus HMAC- SHA-1), interoperability is only considered for unauthenticated mode. There are two possible combinations for such a use case:

  • STAMP Session-Sender with TWAMP Light Session-Reflector
  • TWAMP Light Session-Sender with STAMP Session-Reflector

In the former case, the Session-Sender might not be aware that its Session-Reflector does not support STAMP. For example, a TWAMP Light Session-Reflector may not support the use of UDP port 862, as specified in [RFC8545]. Thus, Section 4 permits a STAMP Session- Sender to use alternative ports. If any of STAMP extensions are used, the TWAMP Light Session-Reflector will view them as the Packet Padding field.

In the latter scenario, if a TWAMP Light Session-Sender does not support the use of UDP port 862, the test management system MUST set the STAMP Session-Reflector to use UDP port number, as permitted by Section 4. The Session-Reflector MUST be set to use the default format for its timestamps, NTP.

A STAMP Session-Reflector that supports this specification will transmit the base packet (Figure 5) if it receives a packet smaller than the STAMP base packet. If the packet received from the TWAMP Session-Sender is larger than the STAMP base packet, the STAMP Session-Reflector that supports this specification will copy the content of the remainder of the received packet to transmit a reflected packet of symmetrical size.

Operational Considerations

STAMP is intended to be used on production networks to enable the operator to assess service level agreements based on packet delay, delay variation, and loss. When using STAMP over the Internet, especially when STAMP-Test packets are transmitted with the destination UDP port number from the User Ports range, the possible impact of the STAMP-Test packets MUST be thoroughly analyzed. The use of STAMP for each case MUST be agreed by users of nodes hosting the Session-Sender and Session-Reflector before starting the STAMP- Test session.

Also, the use of the well-known port number as the destination UDP port number in STAMP-Test packets transmitted by a Session-Sender would not impede the ability to measure performance in an Equal-Cost Multipath environment, and analysis in Section 5.3 of [RFC8545] fully applies to STAMP.

IANA Considerations

This document has no IANA actions.

Security Considerations

[RFC5357] does not identify security considerations specific to TWAMP-Test but refers to security considerations identified for OWAMP in [RFC4656]. Since both OWAMP and TWAMP include control-plane and data-plane components, only security considerations related to OWAMP- Test discussed in Sections 6.2 and 6.3 of [RFC4656] apply to STAMP.

STAMP uses the well-known UDP port number allocated for the OWAMP- Test/TWAMP-Test Receiver Port. Thus, the security considerations and measures to mitigate the risk of the attack using the registered port number documented in Section 6 of [RFC8545] equally apply to STAMP. Because of the control and management of a STAMP-Test being outside the scope of this specification, only the more general requirement is set:

  To mitigate the possible attack vector, the control and management
  of a STAMP-Test session MUST use the secured transport.
  The load of the STAMP-Test packets offered to a network MUST be
  carefully estimated, and the possible impact on the existing
  services MUST be thoroughly analyzed before launching the test
  session.  Section 3.1.5 of [RFC8085] provides guidance on handling
  network load for UDP-based protocol.  While the characteristic of
  test traffic depends on the test objective, it is highly
  recommended to stay in the limits, as provided in [RFC8085].

Use of HMAC-SHA-256 in the authenticated mode protects the data integrity of the STAMP-Test packets.

References

Normative References

[IEEE.1588.2008]

          IEEE, "IEEE Standard for a Precision Clock Synchronization
          Protocol for Networked Measurement and Control Systems",
          IEEE Standard 1588, July 2008.

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

          Hashing for Message Authentication", RFC 2104,
          DOI 10.17487/RFC2104, February 1997,
          <https://www.rfc-editor.org/info/rfc2104>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

          Requirement Levels", BCP 14, RFC 2119,
          DOI 10.17487/RFC2119, March 1997,
          <https://www.rfc-editor.org/info/rfc2119>.

[RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.

          Zekauskas, "A One-way Active Measurement Protocol
          (OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006,
          <https://www.rfc-editor.org/info/rfc4656>.

[RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.

          Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
          RFC 5357, DOI 10.17487/RFC5357, October 2008,
          <https://www.rfc-editor.org/info/rfc5357>.

[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

          "Network Time Protocol Version 4: Protocol and Algorithms
          Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
          <https://www.rfc-editor.org/info/rfc5905>.

[RFC6038] Morton, A. and L. Ciavattone, "Two-Way Active Measurement

          Protocol (TWAMP) Reflect Octets and Symmetrical Size
          Features", RFC 6038, DOI 10.17487/RFC6038, October 2010,
          <https://www.rfc-editor.org/info/rfc6038>.

[RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.

          Cheshire, "Internet Assigned Numbers Authority (IANA)
          Procedures for the Management of the Service Name and
          Transport Protocol Port Number Registry", BCP 165,
          RFC 6335, DOI 10.17487/RFC6335, August 2011,
          <https://www.rfc-editor.org/info/rfc6335>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

          2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
          May 2017, <https://www.rfc-editor.org/info/rfc8174>.

[RFC8186] Mirsky, G. and I. Meilik, "Support of the IEEE 1588

          Timestamp Format in a Two-Way Active Measurement Protocol
          (TWAMP)", RFC 8186, DOI 10.17487/RFC8186, June 2017,
          <https://www.rfc-editor.org/info/rfc8186>.

[RFC8545] Morton, A., Ed. and G. Mirsky, Ed., "Well-Known Port

          Assignments for the One-Way Active Measurement Protocol
          (OWAMP) and the Two-Way Active Measurement Protocol
          (TWAMP)", RFC 8545, DOI 10.17487/RFC8545, March 2019,
          <https://www.rfc-editor.org/info/rfc8545>.

Informative References

[BBF.TR-390]

          Broadband Forum, "Performance Measurement from IP Edge to
          Customer Equipment using TWAMP Light", TR-390 Issue 1, May
          2017.

[RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-

          384, and HMAC-SHA-512 with IPsec", RFC 4868,
          DOI 10.17487/RFC4868, May 2007,
          <https://www.rfc-editor.org/info/rfc4868>.

[RFC7750] Hedin, J., Mirsky, G., and S. Baillargeon, "Differentiated

          Service Code Point and Explicit Congestion Notification
          Monitoring in the Two-Way Active Measurement Protocol
          (TWAMP)", RFC 7750, DOI 10.17487/RFC7750, February 2016,
          <https://www.rfc-editor.org/info/rfc7750>.

[RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

          Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
          March 2017, <https://www.rfc-editor.org/info/rfc8085>.

[STAMP-OPTION]

          Mirsky, G., Xiao, M., Nydell, H., Foote, R., Masputra, A.,
          and E. Ruffini, "Simple Two-way Active Measurement
          Protocol Optional Extensions", Work in Progress, Internet-
          Draft, draft-ietf-ippm-stamp-option-tlv-03, 21 February
          2020, <https://tools.ietf.org/html/draft-ietf-ippm-stamp-
          option-tlv-03>.

[STAMP-YANG]

          Mirsky, G., Xiao, M., and W. Luo, "Simple Two-way Active
          Measurement Protocol (STAMP) Data Model", Work in
          Progress, Internet-Draft, draft-ietf-ippm-stamp-yang-05,
          25 October 2019, <https://tools.ietf.org/html/draft-ietf-
          ippm-stamp-yang-05>.

Acknowledgments

The authors express their appreciation to Jose Ignacio Alvarez- Hamelin and Brian Weis for their great insights into the security and identity protection as well as the most helpful and practical suggestions. Also, our sincere thanks to David Ball, Rakesh Gandhi, and Xiao Min for their thorough reviews and helpful comments.

Authors' Addresses

Greg Mirsky ZTE Corp.

Email: [email protected]

Guo Jun ZTE Corp. 68# Zijinghua Road Nanjing Jiangsu, 210012 China

Phone: +86 18105183663 Email: [email protected]

Henrik Nydell Accedian Networks

Email: [email protected]

Richard Foote Nokia

Email: [email protected]