Difference between revisions of "RFC1186"

From RFC-Wiki
imported>Admin
(Created page with " Network Working Group R. Rivest Request for Comments: 1186 MIT Laboratory for Computer Science ...")
 
Line 7: Line 7:
 
Network Working Group                                        R. Rivest
 
Network Working Group                                        R. Rivest
 
Request for Comments: 1186          MIT Laboratory for Computer Science
 
Request for Comments: 1186          MIT Laboratory for Computer Science
                                                        October 1990
+
                                                          October 1990
  
  
                The MD4 Message Digest Algorithm
+
                    The MD4 Message Digest Algorithm
  
 
Status of this Memo
 
Status of this Memo
  
This RFC is the specification of the MD4 Digest Algorithm.  If you
+
  This RFC is the specification of the MD4 Digest Algorithm.  If you
are going to implement MD4, it is suggested you do it this way.  This
+
  are going to implement MD4, it is suggested you do it this way.  This
memo is for informational use and does not constitute a standard.
+
  memo is for informational use and does not constitute a standard.
Distribution of this memo is unlimited.
+
  Distribution of this memo is unlimited.
  
== Abstract ==
+
Table of Contents
  
This note describes the MD4 message digest algorithmThe algorithm
+
  1Abstract ....................................................    1
takes as input an input message of arbitrary length and produces as
+
  2.  Terminology and Notation ....................................    2
output a 128-bit "fingerprint" or "message digest" of the inputIt
+
  3MD4 Algorithm Description ...................................    2
is conjectured that it is computationally infeasible to produce two
+
  4.  Extensions ..................................................    6
messages having the same message digest, or to produce any message
+
  5.  Summary .....................................................    7
having a given prespecified target message digestThe MD4 algorithm
+
  6Acknowledgements ............................................    7
is thus ideal for digital signature applications, where a large file
+
  APPENDIX - Reference Implementation .............................    7
must be "compressed" in a secure manner before being signed with the
+
  Security Considerations..........................................  18
RSA public-key cryptosystem.
+
  Author's Address.................................................   18
  
The MD4 algorithm is designed to be quite fast on 32-bit machines.
+
1. Abstract
On a SUN Sparc station, MD4 runs at 1,450,000 bytes/second.  On a DEC
 
MicroVax II, MD4 runs at approximately 70,000 bytes/second.  On a
 
20MHz 80286, MD4 runs at approximately 32,000 bytes/second.  In
 
addition, the MD4 algorithm does not require any large substitution
 
tables; the algorithm can be coded quite compactly.
 
  
The MD4 algorithm is being placed in the public domain for review and
+
  This note describes the MD4 message digest algorithm.  The algorithm
possible adoption as a standard.
+
  takes as input an input message of arbitrary length and produces as
 +
  output a 128-bit "fingerprint" or "message digest" of the input.  It
 +
  is conjectured that it is computationally infeasible to produce two
 +
  messages having the same message digest, or to produce any message
 +
  having a given prespecified target message digest.  The MD4 algorithm
 +
  is thus ideal for digital signature applications, where a large file
 +
  must be "compressed" in a secure manner before being signed with the
 +
  RSA public-key cryptosystem.
  
 +
  The MD4 algorithm is designed to be quite fast on 32-bit machines.
 +
  On a SUN Sparc station, MD4 runs at 1,450,000 bytes/second.  On a DEC
 +
  MicroVax II, MD4 runs at approximately 70,000 bytes/second.  On a
 +
  20MHz 80286, MD4 runs at approximately 32,000 bytes/second.  In
 +
  addition, the MD4 algorithm does not require any large substitution
 +
  tables; the algorithm can be coded quite compactly.
  
 +
  The MD4 algorithm is being placed in the public domain for review and
 +
  possible adoption as a standard.
  
  
  
  
(Note: The document supersedes an earlier draft.  The algorithm
+
Rivest                                                       
described here is a slight modification of the one described in the
 
draft.)
 
  
== Terminology and Notation ==
+
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
In this note a "word" is a 32-bit quantity and a byte is an 8-bit
 
quantity.  A sequence of bits can be interpreted in a natural manner
 
as a sequence of bytes, where each consecutive group of 8 bits is
 
interpreted as a byte with the high-order (most significant) bit of
 
each byte listed first.  Similarly, a sequence of bytes can be
 
interpreted as a sequence of 32-bit words, where each consecutive
 
group of 4 bytes is interpreted as a word with the low-order (least
 
significant) byte given first.
 
  
Let x_i denote "x sub i"If the subscript is an expression, we
+
  (Note: The document supersedes an earlier draftThe algorithm
surround it in braces, as in x_{i+1}.  Similarly, we use ^ for
+
  described here is a slight modification of the one described in the
superscripts (exponentiation), so that x^i denotes x to the i-th
+
  draft.)
power.
 
  
Let the symbol "+" denote addition of words (i.e., modulo- 2^32
+
2.  Terminology and Notation
addition). Let X <<< s denote the 32-bit value obtained by circularly
 
shifting (rotating) X left by s bit positions.  Let not(X) denote the
 
bit-wise complement of X, and let X v Y denote the bit-wise OR of X
 
and YLet X xor Y denote the bit-wise XOR of X and Y, and let XY
 
denote the bit-wise AND of X and Y.
 
  
== MD4 Algorithm Description ==
+
  In this note a "word" is a 32-bit quantity and a byte is an 8-bit
 +
  quantity.  A sequence of bits can be interpreted in a natural manner
 +
  as a sequence of bytes, where each consecutive group of 8 bits is
 +
  interpreted as a byte with the high-order (most significant) bit of
 +
  each byte listed first.  Similarly, a sequence of bytes can be
 +
  interpreted as a sequence of 32-bit words, where each consecutive
 +
  group of 4 bytes is interpreted as a word with the low-order (least
 +
  significant) byte given first.
  
We begin by supposing that we have a b-bit message as input, and that
+
  Let x_i denote "x sub i"If the subscript is an expression, we
we wish to find its message digestHere b is an arbitrary
+
  surround it in braces, as in x_{i+1}Similarly, we use ^ for
nonnegative integer; b may be zero, it need not be a multiple of 8,
+
  superscripts (exponentiation), so that x^i denotes x to the i-th
and it may be arbitrarily largeWe imagine the bits of the message
+
  power.
written down as follows:
 
  
            m_0 m_1 ... m_{b-1} .
+
  Let the symbol "+" denote addition of words (i.e., modulo- 2^32
 +
  addition). Let X <<< s denote the 32-bit value obtained by circularly
 +
  shifting (rotating) X left by s bit positions. Let not(X) denote the
 +
  bit-wise complement of X, and let X v Y denote the bit-wise OR of X
 +
  and Y.  Let X xor Y denote the bit-wise XOR of X and Y, and let XY
 +
  denote the bit-wise AND of X and Y.
  
The following five steps are performed to compute the message digest
+
3. MD4 Algorithm Description
of the message.
 
  
   Step 1. Append padding bits
+
   We begin by supposing that we have a b-bit message as input, and that
 +
  we wish to find its message digest. Here b is an arbitrary
 +
  nonnegative integer; b may be zero, it need not be a multiple of 8,
 +
  and it may be arbitrarily large.  We imagine the bits of the message
 +
  written down as follows:
  
      The message is "padded" (extended) so that its length (in bits)
+
                m_0 m_1 ... m_{b-1} .
      is congruent to 448, modulo 512. That is, the message is
 
      extended so that it is just 64 bits shy of being a multiple of
 
      512 bits long. Padding is always performed, even if the length
 
      of the message is already congruent to 448, modulo 512 (in
 
      which case 512 bits of padding are added).
 
  
 +
  The following five steps are performed to compute the message digest
 +
  of the message.
  
 +
      Step 1. Append padding bits
  
 +
        The message is "padded" (extended) so that its length (in bits)
 +
        is congruent to 448, modulo 512.  That is, the message is
 +
        extended so that it is just 64 bits shy of being a multiple of
 +
        512 bits long.  Padding is always performed, even if the length
 +
        of the message is already congruent to 448, modulo 512 (in
 +
        which case 512 bits of padding are added).
  
  
      Padding is performed as follows: a single "1" bit is appended
 
      to the message, and then enough zero bits are appended so that
 
      the length in bits of the padded message becomes congruent to
 
      448, modulo 512.
 
  
  Step 2. Append length
+
Rivest                                                       
  
      A 64-bit representation of b (the length of the message before
+
RFC 1186              MD4 Message Digest Algorithm          October 1990
      the padding bits were added) is appended to the result of the
 
      previous step.  In the unlikely event that b is greater than
 
      2^64, then only the low-order 64 bits of b are used.  (These
 
      bits are appended as two 32-bit words and appended low-order
 
      word first in accordance with the previous conventions.)
 
  
      At this point the resulting message (after padding with bits
 
      and with b) has a length that is an exact multiple of 512 bits.
 
      Equivalently, this message has a length that is an exact
 
      multiple of 16 (32-bit) words.  Let M[0 ... N-1] denote the
 
      words of the resulting message, where N is a multiple of 16.
 
  
  Step 3. Initialize MD buffer
+
        Padding is performed as follows: a single "1" bit is appended
 +
        to the message, and then enough zero bits are appended so that
 +
        the length in bits of the padded message becomes congruent to
 +
        448, modulo 512.
  
       A 4-word buffer (A,B,C,D) is used to compute the message
+
       Step 2. Append length
      digest. Here each of A,B,C,D are 32-bit registers.  These
 
      registers are initialized to the following values in
 
      hexadecimal, low-order bytes first):
 
  
         word A:    01 23 45 67
+
         A 64-bit representation of b (the length of the message before
         word B:    89 ab cd ef
+
         the padding bits were added) is appended to the result of the
         word C:    fe dc ba 98
+
        previous step.  In the unlikely event that b is greater than
         word D:    76 54 32 10
+
        2^64, then only the low-order 64 bits of b are used.  (These
 +
         bits are appended as two 32-bit words and appended low-order
 +
         word first in accordance with the previous conventions.)
  
  Step 4. Process message in 16-word blocks
+
        At this point the resulting message (after padding with bits
 +
        and with b) has a length that is an exact multiple of 512 bits.
 +
        Equivalently, this message has a length that is an exact
 +
        multiple of 16 (32-bit) words.  Let M[0 ... N-1] denote the
 +
        words of the resulting message, where N is a multiple of 16.
  
       We first define three auxiliary functions that each take
+
       Step 3. Initialize MD buffer
      as input three 32-bit words and produce as output one
 
      32-bit word.
 
  
         f(X,Y,Z)  =  XY v not(X)Z
+
         A 4-word buffer (A,B,C,D) is used to compute the message
         g(X,Y,Z) =  XY v XZ v YZ
+
         digest.  Here each of A,B,C,D are 32-bit registers. These
         h(X,Y,Z) =  X xor Y xor Z
+
        registers are initialized to the following values in
 +
         hexadecimal, low-order bytes first):
  
      In each bit position f acts as a conditional: if x then y else
+
            word A:   01 23 45 67
      z.  (The function f could have been defined using + instead of
+
            word B:    89 ab cd ef
      v since XY and not(X)Z will never have 1's in the same bit
+
            word C:    fe dc ba 98
      position.)  In each bit position g acts as a majority function:
+
            word D:   76 54 32 10
      if at least two of x, y, z are on, then g has a one in that bit
 
      position, else g has a zero. It is interesting to note that if
 
  
 +
      Step 4. Process message in 16-word blocks
  
 +
        We first define three auxiliary functions that each take
 +
        as input three 32-bit words and produce as output one
 +
        32-bit word.
  
 +
            f(X,Y,Z)  =  XY v not(X)Z
 +
            g(X,Y,Z)  =  XY v XZ v YZ
 +
            h(X,Y,Z)  =  X xor Y xor Z
  
 +
        In each bit position f acts as a conditional: if x then y else
 +
        z.  (The function f could have been defined using + instead of
 +
        v since XY and not(X)Z will never have 1's in the same bit
 +
        position.)  In each bit position g acts as a majority function:
 +
        if at least two of x, y, z are on, then g has a one in that bit
 +
        position, else g has a zero. It is interesting to note that if
  
      the bits of X, Y, and Z are independent and unbiased, the each
 
      bit of f(X,Y,Z) will be independent and unbiased, and similarly
 
      each bit of g(X,Y,Z) will be independent and unbiased.  The
 
      function h is the bit-wise "xor" or "parity" function; it has
 
      properties similar to those of f and g.
 
  
      Do the following:
 
  
      For i = 0 to N/16-1 do  /* process each 16-word block */
+
Rivest                                                       
              For j = 0 to 15 do: /* copy block i into X */
 
                Set X[j] to M[i*16+j].
 
              end /* of loop on j */
 
              Save A as AA, B as BB, C as CC, and D as DD.
 
  
              [Round 1]
+
RFC 1186              MD4 Message Digest Algorithm          October 1990
                Let [A B C D i s] denote the operation
 
                      A = (A + f(B,C,D) + X[i]) <<< s  .
 
                Do the following 16 operations:
 
                      [A B C D 0 3]
 
                      [D A B C 1 7]
 
                      [C D A B 2 11]
 
                      [B C D A 3 19]
 
                      [A B C D 4 3]
 
                      [D A B C 5 7]
 
                      [C D A B 6 11]
 
                      [B C D A 7 19]
 
                      [A B C D 8 3]
 
                      [D A B C 9 7]
 
                      [C D A B 10 11]
 
                      [B C D A 11 19]
 
                      [A B C D 12 3]
 
                      [D A B C 13 7]
 
                      [C D A B 14 11]
 
                      [B C D A 15 19]
 
  
              [Round 2]
 
                Let [A B C D i s] denote the operation
 
                      A = (A + g(B,C,D) + X[i] + 5A827999) <<< s .
 
                (The value 5A..99 is a hexadecimal 32-bit
 
                constant, written with the high-order digit
 
                first. This constant represents the square
 
                root of 2.  The octal value of this constant
 
                is 013240474631.  See Knuth, The Art of
 
                Programming, Volume 2 (Seminumerical
 
                Algorithms), Second Edition (1981),
 
                Addison-Wesley.  Table 2, page 660.)
 
                Do the following 16 operations:
 
                      [A B C D 0  3]
 
  
 +
        the bits of X, Y, and Z are independent and unbiased, the each
 +
        bit of f(X,Y,Z) will be independent and unbiased, and similarly
 +
        each bit of g(X,Y,Z) will be independent and unbiased.  The
 +
        function h is the bit-wise "xor" or "parity" function; it has
 +
        properties similar to those of f and g.
  
 +
        Do the following:
  
 +
        For i = 0 to N/16-1 do  /* process each 16-word block */
 +
                For j = 0 to 15 do: /* copy block i into X */
 +
                  Set X[j] to M[i*16+j].
 +
                end /* of loop on j */
 +
                Save A as AA, B as BB, C as CC, and D as DD.
  
 +
                [Round 1]
 +
                  Let [A B C D i s] denote the operation
 +
                        A = (A + f(B,C,D) + X[i]) <<< s  .
 +
                  Do the following 16 operations:
 +
                        [A B C D 0 3]
 +
                        [D A B C 1 7]
 +
                        [C D A B 2 11]
 +
                        [B C D A 3 19]
 +
                        [A B C D 4 3]
 +
                        [D A B C 5 7]
 +
                        [C D A B 6 11]
 +
                        [B C D A 7 19]
 +
                        [A B C D 8 3]
 +
                        [D A B C 9 7]
 +
                        [C D A B 10 11]
 +
                        [B C D A 11 19]
 +
                        [A B C D 12 3]
 +
                        [D A B C 13 7]
 +
                        [C D A B 14 11]
 +
                        [B C D A 15 19]
  
                      [D A B C 4  5]
+
                [Round 2]
                      [C D A B 8  9]
+
                  Let [A B C D i s] denote the operation
                      [B C D A 12 13]
+
                        A = (A + g(B,C,D) + X[i] + 5A827999) <<< s .
                      [A B C D 1  3]
+
                  (The value 5A..99 is a hexadecimal 32-bit
                      [D A B C 5  5]
+
                  constant, written with the high-order digit
                      [C D A B 9  9]
+
                  first. This constant represents the square
                      [B C D A 13 13]
+
                  root of 2. The octal value of this constant
                      [A B C D 3]
+
                  is 013240474631. See Knuth, The Art of
                      [D A B C 6 5]
+
                  Programming, Volume 2 (Seminumerical
                      [C D A B 10 9]
+
                  Algorithms), Second Edition (1981),
                      [B C D A 14 13]
+
                  Addison-Wesley. Table 2, page 660.)
                      [A B C D 3 3]
+
                  Do the following 16 operations:
                      [D A B C 7  5]
+
                        [A B C D 0  3]
                      [C D A B 11 9]
 
                      [B C D A 15 13]
 
  
              [Round 3]
 
                Let [A B C D i s] denote the operation
 
                      A = (A + h(B,C,D) + X[i] + 6ED9EBA1) <<< s .
 
                (The value 6E..A1 is a hexadecimal 32-bit
 
                constant, written with the high-order digit
 
                first.  This constant represents the square
 
                root of 3.  The octal value of this constant
 
                is 015666365641.  See Knuth, The Art of
 
                Programming, Volume 2 (Seminumerical
 
                Algorithms), Second Edition (1981),
 
                Addison-Wesley.  Table 2, page 660.)
 
                Do the following 16 operations:
 
                      [A B C D 0  3]
 
                      [D A B C 8  9]
 
                      [C D A B 4  11]
 
                      [B C D A 12 15]
 
                      [A B C D 2  3]
 
                      [D A B C 10 9]
 
                      [C D A B 6  11]
 
                      [B C D A 14 15]
 
                      [A B C D 1  3]
 
                      [D A B C 9  9]
 
                      [C D A B 5  11]
 
                      [B C D A 13 15]
 
                      [A B C D 3  3]
 
                      [D A B C 11 9]
 
                      [C D A B 7  11]
 
                      [B C D A 15 15]
 
  
      Then perform the following additions:
 
                      A = A + AA
 
                      B = B + BB
 
  
 +
Rivest                                                       
  
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
  
 +
                        [D A B C 4  5]
 +
                        [C D A B 8  9]
 +
                        [B C D A 12 13]
 +
                        [A B C D 1  3]
 +
                        [D A B C 5  5]
 +
                        [C D A B 9  9]
 +
                        [B C D A 13 13]
 +
                        [A B C D 2  3]
 +
                        [D A B C 6  5]
 +
                        [C D A B 10 9]
 +
                        [B C D A 14 13]
 +
                        [A B C D 3  3]
 +
                        [D A B C 7  5]
 +
                        [C D A B 11 9]
 +
                        [B C D A 15 13]
  
                      C = C + CC
+
                [Round 3]
                      D = D + DD
+
                  Let [A B C D i s] denote the operation
      (That is, each of the four registers is incremented by
+
                        A = (A + h(B,C,D) + X[i] + 6ED9EBA1) <<< s .
      the value it had before this block was started.)
+
                  (The value 6E..A1 is a hexadecimal 32-bit
 +
                  constant, written with the high-order digit
 +
                  first.  This constant represents the square
 +
                  root of 3.  The octal value of this constant
 +
                  is 015666365641.  See Knuth, The Art of
 +
                  Programming, Volume 2 (Seminumerical
 +
                  Algorithms), Second Edition (1981),
 +
                  Addison-Wesley.  Table 2, page 660.)
 +
                  Do the following 16 operations:
 +
                        [A B C D 0  3]
 +
                        [D A B C 8  9]
 +
                        [C D A B 4  11]
 +
                        [B C D A 12 15]
 +
                        [A B C D 2  3]
 +
                        [D A B C 10 9]
 +
                        [C D A B 6  11]
 +
                        [B C D A 14 15]
 +
                        [A B C D 1  3]
 +
                        [D A B C 9  9]
 +
                        [C D A B 5  11]
 +
                        [B C D A 13 15]
 +
                        [A B C D 3  3]
 +
                        [D A B C 11 9]
 +
                        [C D A B 7  11]
 +
                        [B C D A 15 15]
  
      end /* of loop on i */
+
        Then perform the following additions:
 +
                        A = A + AA
 +
                        B = B + BB
  
  Step 5. Output
 
  
      The message digest produced as output is A,B,C,D.  That is, we
 
      begin with the low-order byte of A, and end with the high-order
 
      byte of D.
 
  
      This completes the description of MD4.  A reference
+
Rivest                                                       
      implementation in C is given in the Appendix.
 
  
== Extensions ==
+
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
If more than 128 bits of output are required, then the following
 
procedure is recommended to obtain a 256-bit output.  (There is no
 
provision made for obtaining more than 256 bits.)
 
  
Two copies of MD4 are run in parallel over the input.  The first copy
+
                        C = C + CC
is standard as described above.  The second copy is modified as
+
                        D = D + DD
follows.
+
        (That is, each of the four registers is incremented by
 +
        the value it had before this block was started.)
  
The initial state of the second copy is:
+
        end /* of loop on i */
                word A:    00 11 22 33
 
                word B:    44 55 66 77
 
                word C:    88 99 aa bb
 
                word D:    cc dd ee ff
 
  
The magic constants in rounds 2 and 3 for the second copy of MD4 are
+
      Step 5. Output
changed from sqrt(2) and sqrt(3) to cuberoot(2) and cuberoot(3):
 
  
                                Octal          Hex
+
        The message digest produced as output is A,B,C,D.  That is, we
         Round 2 constant        012050505746    50a28be6
+
         begin with the low-order byte of A, and end with the high-order
         Round 3 constant        013423350444    5c4dd124
+
         byte of D.
  
Finally, after every 16-word block is processed (including the last
+
        This completes the description of MD4.  A reference
block), the values of the A registers in the two copies are
+
        implementation in C is given in the Appendix.
exchanged.
 
  
The final message digest is obtaining by appending the result of the
+
4. Extensions
second copy of MD4 to the end of the result of the first copy of MD4.
 
  
 +
  If more than 128 bits of output are required, then the following
 +
  procedure is recommended to obtain a 256-bit output.  (There is no
 +
  provision made for obtaining more than 256 bits.)
  
 +
  Two copies of MD4 are run in parallel over the input.  The first copy
 +
  is standard as described above.  The second copy is modified as
 +
  follows.
  
 +
  The initial state of the second copy is:
 +
                    word A:    00 11 22 33
 +
                    word B:    44 55 66 77
 +
                    word C:    88 99 aa bb
 +
                    word D:    cc dd ee ff
  
 +
  The magic constants in rounds 2 and 3 for the second copy of MD4 are
 +
  changed from sqrt(2) and sqrt(3) to cuberoot(2) and cuberoot(3):
  
 +
                                    Octal          Hex
 +
            Round 2 constant        012050505746    50a28be6
 +
            Round 3 constant        013423350444    5c4dd124
  
 +
  Finally, after every 16-word block is processed (including the last
 +
  block), the values of the A registers in the two copies are
 +
  exchanged.
  
 +
  The final message digest is obtaining by appending the result of the
 +
  second copy of MD4 to the end of the result of the first copy of MD4.
  
== Summary ==
 
  
The MD4 message digest algorithm is simple to implement, and provides
 
a "fingerprint" or message digest of a message of arbitrary length.
 
  
It is conjectured that the difficulty of coming up with two messages
 
having the same message digest is on the order of 2^64 operations,
 
and that the difficulty of coming up with any message having a given
 
message digest is on the order of 2^128 operations.  The MD4
 
algorithm has been carefully scrutinized for weaknesses.  It is,
 
however, a relatively new algorithm and further security analysis is
 
of course justified, as is the case with any new proposal of this
 
sort.  The level of security provided by MD4 should be sufficient for
 
implementing very high security hybrid digital signature schemes
 
based on MD4 and the RSA public-key cryptosystem.
 
  
== Acknowledgements ==
 
  
I'd like to thank Don Coppersmith, Burt Kaliski, Ralph Merkle, and
+
 
Noam Nisan for numerous helpful comments and suggestions.
+
Rivest                                                       
 +
 
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
 +
 
 +
 
 +
5.  Summary
 +
 
 +
  The MD4 message digest algorithm is simple to implement, and provides
 +
  a "fingerprint" or message digest of a message of arbitrary length.
 +
 
 +
  It is conjectured that the difficulty of coming up with two messages
 +
  having the same message digest is on the order of 2^64 operations,
 +
  and that the difficulty of coming up with any message having a given
 +
  message digest is on the order of 2^128 operations.  The MD4
 +
  algorithm has been carefully scrutinized for weaknesses.  It is,
 +
  however, a relatively new algorithm and further security analysis is
 +
  of course justified, as is the case with any new proposal of this
 +
  sort.  The level of security provided by MD4 should be sufficient for
 +
  implementing very high security hybrid digital signature schemes
 +
  based on MD4 and the RSA public-key cryptosystem.
 +
 
 +
6.  Acknowledgements
 +
 
 +
  I'd like to thank Don Coppersmith, Burt Kaliski, Ralph Merkle, and
 +
  Noam Nisan for numerous helpful comments and suggestions.
  
 
APPENDIX - Reference Implementation
 
APPENDIX - Reference Implementation
Line 336: Line 366:
 
This appendix contains the following files:
 
This appendix contains the following files:
  
      md4.h        -- header file for using MD4 implementation
+
        md4.h        -- header file for using MD4 implementation
      md4.c        -- the source code for MD4 routines
+
        md4.c        -- the source code for MD4 routines
      md4driver.c  -- a sample "user" routine
+
        md4driver.c  -- a sample "user" routine
      session      -- sample results of running md4driver
+
        session      -- sample results of running md4driver
  
 
  /*
 
  /*
Line 353: Line 383:
 
  */
 
  */
 
  typedef struct {
 
  typedef struct {
unsigned int buffer[4]; /* Holds 4-word result of MD computation */
+
  unsigned int buffer[4]; /* Holds 4-word result of MD computation */
unsigned char count[8]; /* Number of bits processed so far */
+
  unsigned char count[8]; /* Number of bits processed so far */
unsigned int done;      /* Nonzero means MD computation finished */
+
  unsigned int done;      /* Nonzero means MD computation finished */
 
  } MDstruct, *MDptr;
 
  } MDstruct, *MDptr;
  
Line 362: Line 392:
  
  
 +
Rivest                                                       
 +
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
  
Line 415: Line 448:
  
  
 +
Rivest                                                       
 +
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
  
Line 468: Line 504:
  
  
 +
Rivest                                                       
 +
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
  
Line 507: Line 546:
 
  MDptr MDp;
 
  MDptr MDp;
 
  { int i,j;
 
  { int i,j;
for (i=0;i<4;i++)
+
  for (i=0;i<4;i++)
  for (j=0;j<32;j=j+8)
+
    for (j=0;j<32;j=j+8)
    printf("%02x",(MDp->buffer[i]>>j) & 0xFF);
+
      printf("%02x",(MDp->buffer[i]>>j) & 0xFF);
 
  }
 
  }
  
Line 521: Line 560:
  
  
 +
Rivest                                                       
 +
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
  
 
  MDptr MDp;
 
  MDptr MDp;
 
  { int i;
 
  { int i;
MDp->buffer[0] = I0;
+
  MDp->buffer[0] = I0;
MDp->buffer[1] = I1;
+
  MDp->buffer[1] = I1;
MDp->buffer[2] = I2;
+
  MDp->buffer[2] = I2;
MDp->buffer[3] = I3;
+
  MDp->buffer[3] = I3;
for (i=0;i<8;i++) MDp->count[i] = 0;
+
  for (i=0;i<8;i++) MDp->count[i] = 0;
MDp->done = 0;
+
  MDp->done = 0;
 
  }
 
  }
  
Line 539: Line 581:
 
  */
 
  */
 
  #define revx { t = (*X << 16) | (*X >> 16); \
 
  #define revx { t = (*X << 16) | (*X >> 16); \
  *X++ = ((t & 0xFF00FF00) >> 8) | ((t & 0x00FF00FF) << 8); }
+
      *X++ = ((t & 0xFF00FF00) >> 8) | ((t & 0x00FF00FF) << 8); }
 
  MDreverse(X)
 
  MDreverse(X)
 
  unsigned int *X;
 
  unsigned int *X;
 
  { register unsigned int t;
 
  { register unsigned int t;
revx; revx; revx; revx; revx; revx; revx; revx;
+
  revx; revx; revx; revx; revx; revx; revx; revx;
revx; revx; revx; revx; revx; revx; revx; revx;
+
  revx; revx; revx; revx; revx; revx; revx; revx;
 
  }
 
  }
  
Line 558: Line 600:
 
  unsigned int *X;
 
  unsigned int *X;
 
  {
 
  {
register unsigned int tmp, A, B, C, D;
+
  register unsigned int tmp, A, B, C, D;
 
  #if LOWBYTEFIRST == FALSE
 
  #if LOWBYTEFIRST == FALSE
MDreverse(X);
+
  MDreverse(X);
 
  #endif
 
  #endif
A = MDp->buffer[0];
+
  A = MDp->buffer[0];
B = MDp->buffer[1];
+
  B = MDp->buffer[1];
C = MDp->buffer[2];
+
  C = MDp->buffer[2];
D = MDp->buffer[3];
+
  D = MDp->buffer[3];
/* Update the message digest buffer */
+
  /* Update the message digest buffer */
ff(A , B , C , D ,  0 , fs1); /* Round 1 */
+
  ff(A , B , C , D ,  0 , fs1); /* Round 1 */
ff(D , A , B , C ,  1 , fs2);
+
  ff(D , A , B , C ,  1 , fs2);
ff(C , D , A , B ,  2 , fs3);
+
  ff(C , D , A , B ,  2 , fs3);
ff(B , C , D , A ,  3 , fs4);
+
  ff(B , C , D , A ,  3 , fs4);
  
  
  
 +
Rivest                                                       
  
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
ff(A , B , C , D ,  4 , fs1);
 
ff(D , A , B , C ,  5 , fs2);
 
ff(C , D , A , B ,  6 , fs3);
 
ff(B , C , D , A ,  7 , fs4);
 
ff(A , B , C , D ,  8 , fs1);
 
ff(D , A , B , C ,  9 , fs2);
 
ff(C , D , A , B , 10 , fs3);
 
ff(B , C , D , A , 11 , fs4);
 
ff(A , B , C , D , 12 , fs1);
 
ff(D , A , B , C , 13 , fs2);
 
ff(C , D , A , B , 14 , fs3);
 
ff(B , C , D , A , 15 , fs4);
 
gg(A , B , C , D ,  0 , gs1); /* Round 2 */
 
gg(D , A , B , C ,  4 , gs2);
 
gg(C , D , A , B ,  8 , gs3);
 
gg(B , C , D , A , 12 , gs4);
 
gg(A , B , C , D ,  1 , gs1);
 
gg(D , A , B , C ,  5 , gs2);
 
gg(C , D , A , B ,  9 , gs3);
 
gg(B , C , D , A , 13 , gs4);
 
gg(A , B , C , D ,  2 , gs1);
 
gg(D , A , B , C ,  6 , gs2);
 
gg(C , D , A , B , 10 , gs3);
 
gg(B , C , D , A , 14 , gs4);
 
gg(A , B , C , D ,  3 , gs1);
 
gg(D , A , B , C ,  7 , gs2);
 
gg(C , D , A , B , 11 , gs3);
 
gg(B , C , D , A , 15 , gs4);
 
hh(A , B , C , D ,  0 , hs1); /* Round 3 */
 
hh(D , A , B , C ,  8 , hs2);
 
hh(C , D , A , B ,  4 , hs3);
 
hh(B , C , D , A , 12 , hs4);
 
hh(A , B , C , D ,  2 , hs1);
 
hh(D , A , B , C , 10 , hs2);
 
hh(C , D , A , B ,  6 , hs3);
 
hh(B , C , D , A , 14 , hs4);
 
hh(A , B , C , D ,  1 , hs1);
 
hh(D , A , B , C ,  9 , hs2);
 
hh(C , D , A , B ,  5 , hs3);
 
hh(B , C , D , A , 13 , hs4);
 
hh(A , B , C , D ,  3 , hs1);
 
hh(D , A , B , C , 11 , hs2);
 
hh(C , D , A , B ,  7 , hs3);
 
hh(B , C , D , A , 15 , hs4);
 
MDp->buffer[0] += A;
 
MDp->buffer[1] += B;
 
MDp->buffer[2] += C;
 
MDp->buffer[3] += D;
 
  
 +
  ff(A , B , C , D ,  4 , fs1);
 +
  ff(D , A , B , C ,  5 , fs2);
 +
  ff(C , D , A , B ,  6 , fs3);
 +
  ff(B , C , D , A ,  7 , fs4);
 +
  ff(A , B , C , D ,  8 , fs1);
 +
  ff(D , A , B , C ,  9 , fs2);
 +
  ff(C , D , A , B , 10 , fs3);
 +
  ff(B , C , D , A , 11 , fs4);
 +
  ff(A , B , C , D , 12 , fs1);
 +
  ff(D , A , B , C , 13 , fs2);
 +
  ff(C , D , A , B , 14 , fs3);
 +
  ff(B , C , D , A , 15 , fs4);
 +
  gg(A , B , C , D ,  0 , gs1); /* Round 2 */
 +
  gg(D , A , B , C ,  4 , gs2);
 +
  gg(C , D , A , B ,  8 , gs3);
 +
  gg(B , C , D , A , 12 , gs4);
 +
  gg(A , B , C , D ,  1 , gs1);
 +
  gg(D , A , B , C ,  5 , gs2);
 +
  gg(C , D , A , B ,  9 , gs3);
 +
  gg(B , C , D , A , 13 , gs4);
 +
  gg(A , B , C , D ,  2 , gs1);
 +
  gg(D , A , B , C ,  6 , gs2);
 +
  gg(C , D , A , B , 10 , gs3);
 +
  gg(B , C , D , A , 14 , gs4);
 +
  gg(A , B , C , D ,  3 , gs1);
 +
  gg(D , A , B , C ,  7 , gs2);
 +
  gg(C , D , A , B , 11 , gs3);
 +
  gg(B , C , D , A , 15 , gs4);
 +
  hh(A , B , C , D ,  0 , hs1); /* Round 3 */
 +
  hh(D , A , B , C ,  8 , hs2);
 +
  hh(C , D , A , B ,  4 , hs3);
 +
  hh(B , C , D , A , 12 , hs4);
 +
  hh(A , B , C , D ,  2 , hs1);
 +
  hh(D , A , B , C , 10 , hs2);
 +
  hh(C , D , A , B ,  6 , hs3);
 +
  hh(B , C , D , A , 14 , hs4);
 +
  hh(A , B , C , D ,  1 , hs1);
 +
  hh(D , A , B , C ,  9 , hs2);
 +
  hh(C , D , A , B ,  5 , hs3);
 +
  hh(B , C , D , A , 13 , hs4);
 +
  hh(A , B , C , D ,  3 , hs1);
 +
  hh(D , A , B , C , 11 , hs2);
 +
  hh(C , D , A , B ,  7 , hs3);
 +
  hh(B , C , D , A , 15 , hs4);
 +
  MDp->buffer[0] += A;
 +
  MDp->buffer[1] += B;
 +
  MDp->buffer[2] += C;
 +
  MDp->buffer[3] += D;
  
  
 +
 +
Rivest                                                       
 +
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
  
Line 651: Line 699:
 
  unsigned int count;
 
  unsigned int count;
 
  { unsigned int i, tmp, bit, byte, mask;
 
  { unsigned int i, tmp, bit, byte, mask;
unsigned char XX[64];
+
  unsigned char XX[64];
unsigned char *p;
+
  unsigned char *p;
/* return with no error if this is a courtesy close with count
+
  /* return with no error if this is a courtesy close with count
** zero and MDp->done is true.
+
  ** zero and MDp->done is true.
*/
+
  */
if (count == 0 && MDp->done) return;
+
  if (count == 0 && MDp->done) return;
/* check to see if MD is already done and report error */
+
  /* check to see if MD is already done and report error */
if (MDp->done)
+
  if (MDp->done)
      { printf("\nError: MDupdate MD already done."); return; }
+
          { printf("\nError: MDupdate MD already done."); return; }
/* Add count to MDp->count */
+
  /* Add count to MDp->count */
tmp = count;
+
  tmp = count;
p = MDp->count;
+
  p = MDp->count;
while (tmp)
+
  while (tmp)
  { tmp += *p;
+
    { tmp += *p;
    *p++ = tmp;
+
      *p++ = tmp;
    tmp = tmp >> 8;
+
      tmp = tmp >> 8;
  }
+
    }
/* Process data */
+
  /* Process data */
if (count == 512)
+
  if (count == 512)
  { /* Full block of data to handle */
+
    { /* Full block of data to handle */
    MDblock(MDp,(unsigned int *)X);
+
      MDblock(MDp,(unsigned int *)X);
  }
+
    }
else if (count > 512) /* Check for count too large */
+
  else if (count > 512) /* Check for count too large */
  { printf("\nError: MDupdate called with illegal count value %d."
+
    { printf("\nError: MDupdate called with illegal count value %d."
          ,count);
+
              ,count);
    return;
+
      return;
  
  
  
 +
Rivest                                                       
  
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
  }
+
 
else /* partial block -- must be last block so finish up */
+
    }
  { /* Find out how many bytes and residual bits there are */
+
  else /* partial block -- must be last block so finish up */
    byte = count >> 3;
+
    { /* Find out how many bytes and residual bits there are */
    bit =  count & 7;
+
      byte = count >> 3;
    /* Copy X into XX since we need to modify it */
+
      bit =  count & 7;
    for (i=0;i<=byte;i++)  XX[i] = X[i];
+
      /* Copy X into XX since we need to modify it */
    for (i=byte+1;i<64;i++) XX[i] = 0;
+
      for (i=0;i<=byte;i++)  XX[i] = X[i];
    /* Add padding '1' bit and low-order zeros in last byte */
+
      for (i=byte+1;i<64;i++) XX[i] = 0;
    mask = 1 << (7 - bit);
+
      /* Add padding '1' bit and low-order zeros in last byte */
    XX[byte] = (XX[byte] | mask) & ~( mask - 1);
+
      mask = 1 << (7 - bit);
    /* If room for bit count, finish up with this block */
+
      XX[byte] = (XX[byte] | mask) & ~( mask - 1);
    if (byte <= 55)
+
      /* If room for bit count, finish up with this block */
      { for (i=0;i<8;i++) XX[56+i] = MDp->count[i];
+
      if (byte <= 55)
        MDblock(MDp,(unsigned int *)XX);
+
        { for (i=0;i<8;i++) XX[56+i] = MDp->count[i];
      }
+
          MDblock(MDp,(unsigned int *)XX);
    else /* need to do two blocks to finish up */
+
        }
      { MDblock(MDp,(unsigned int *)XX);
+
      else /* need to do two blocks to finish up */
        for (i=0;i<56;i++) XX[i] = 0;
+
        { MDblock(MDp,(unsigned int *)XX);
        for (i=0;i<8;i++)  XX[56+i] = MDp->count[i];
+
          for (i=0;i<56;i++) XX[i] = 0;
        MDblock(MDp,(unsigned int *)XX);
+
          for (i=0;i<8;i++)  XX[56+i] = MDp->count[i];
      }
+
          MDblock(MDp,(unsigned int *)XX);
    /* Set flag saying we're done with MD computation */
+
        }
    MDp->done = 1;
+
      /* Set flag saying we're done with MD computation */
  }
+
      MDp->done = 1;
 +
    }
 
  }
 
  }
  
Line 733: Line 784:
  
  
 +
Rivest                                                       
 +
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
  
 
  { unsigned int X[16];
 
  { unsigned int X[16];
MDstruct MD;
+
  MDstruct MD;
int i;
+
  int i;
double t;
+
  double t;
for (i=0;i<16;i++) X[i] = 0x01234567 + i;
+
  for (i=0;i<16;i++) X[i] = 0x01234567 + i;
printf
+
  printf
("MD4 time trial. Processing 1 million 64-character blocks...\n");
+
  ("MD4 time trial. Processing 1 million 64-character blocks...\n");
clock();
+
  clock();
MDbegin(&MD);
+
  MDbegin(&MD);
for (i=0;i<1000000;i++) MDupdate(&MD,X,512);
+
  for (i=0;i<1000000;i++) MDupdate(&MD,X,512);
MDupdate(&MD,X,0);
+
  MDupdate(&MD,X,0);
t = (double) clock(); /* in microseconds */
+
  t = (double) clock(); /* in microseconds */
MDprint(&MD); printf(" is digest of 64M byte test input.\n");
+
  MDprint(&MD); printf(" is digest of 64M byte test input.\n");
printf("Seconds to process test input:  %g\n,t/1e6);
+
  printf("Seconds to process test input:  %g\n,t/1e6);
printf("Characters processed per second: %ld.\n,(int)(64e12/t));
+
  printf("Characters processed per second: %ld.\n,(int)(64e12/t));
 
  }
 
  }
  
Line 760: Line 814:
 
  unsigned char *s;
 
  unsigned char *s;
 
  { unsigned int i, len = strlen(s);
 
  { unsigned int i, len = strlen(s);
MDstruct MD;
+
  MDstruct MD;
MDbegin(&MD);
+
  MDbegin(&MD);
for (i=0;i+64<=len;i=i+64) MDupdate(&MD,s+i,512);
+
  for (i=0;i+64<=len;i=i+64) MDupdate(&MD,s+i,512);
MDupdate(&MD,s+i,(len-i)*8);
+
  MDupdate(&MD,s+i,(len-i)*8);
MDprint(&MD);
+
  MDprint(&MD);
printf(" \"%s\"\n",s);
+
  printf(" \"%s\"\n",s);
 
  }
 
  }
  
Line 776: Line 830:
 
  char *filename;
 
  char *filename;
 
  { FILE *f = fopen(filename,"rb");
 
  { FILE *f = fopen(filename,"rb");
unsigned char X[64];
+
  unsigned char X[64];
MDstruct MD;
+
  MDstruct MD;
int b;
+
  int b;
if (f == NULL)
+
  if (f == NULL)
  { printf("%s can't be opened.\n",filename); return; }
+
      { printf("%s can't be opened.\n",filename); return; }
MDbegin(&MD);
+
  MDbegin(&MD);
while ((b=fread(X,1,64,f))!=0) MDupdate(&MD,X,b*8);
+
  while ((b=fread(X,1,64,f))!=0) MDupdate(&MD,X,b*8);
 +
 
  
  
 +
Rivest                                                       
  
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
  
MDupdate(&MD,X,0);
+
  MDupdate(&MD,X,0);
MDprint(&MD);
+
  MDprint(&MD);
printf(" %s\n",filename);
+
  printf(" %s\n",filename);
fclose(f);
+
  fclose(f);
 
  }
 
  }
  
Line 800: Line 857:
 
  MDfilter()
 
  MDfilter()
 
  { unsigned char X[64];
 
  { unsigned char X[64];
MDstruct MD;
+
  MDstruct MD;
int b;
+
  int b;
MDbegin(&MD);
+
  MDbegin(&MD);
while ((b=fread(X,1,64,stdin))!=0) MDupdate(&MD,X,b*8);
+
  while ((b=fread(X,1,64,stdin))!=0) MDupdate(&MD,X,b*8);
MDupdate(&MD,X,0);
+
  MDupdate(&MD,X,0);
MDprint(&MD);
+
  MDprint(&MD);
printf("\n");
+
  printf("\n");
 
  }
 
  }
  
Line 814: Line 871:
 
  MDtestsuite()
 
  MDtestsuite()
 
  {
 
  {
printf("MD4 test suite results:\n");
+
  printf("MD4 test suite results:\n");
MDstring("");
+
  MDstring("");
MDstring("a");
+
  MDstring("a");
MDstring("abc");
+
  MDstring("abc");
MDstring("message digest");
+
  MDstring("message digest");
MDstring("abcdefghijklmnopqrstuvwxyz");
+
  MDstring("abcdefghijklmnopqrstuvwxyz");
MDstring
+
  MDstring
("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
+
  ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
MDfile("foo"); /* Contents of file foo are "abc" */
+
  MDfile("foo"); /* Contents of file foo are "abc" */
 
  }
 
  }
  
Line 829: Line 886:
 
  char *argv[];
 
  char *argv[];
 
  { int i;
 
  { int i;
/* For each command line argument in turn:
+
  /* For each command line argument in turn:
** filename          -- prints message digest and name of file
+
  ** filename          -- prints message digest and name of file
** -sstring          -- prints message digest and contents of string
+
  ** -sstring          -- prints message digest and contents of string
** -t                -- prints time trial statistics for 64M bytes
+
  ** -t                -- prints time trial statistics for 64M bytes
** -x                -- execute a standard suite of test data
+
  ** -x                -- execute a standard suite of test data
** (no args)        -- writes messages digest of stdin onto stdout
+
  ** (no args)        -- writes messages digest of stdin onto stdout
*/
+
  */
 +
 
  
  
 +
Rivest                                                       
  
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
  
if (argc==1) MDfilter();
+
  if (argc==1) MDfilter();
else
+
  else
  for (i=1;i<argc;i++)
+
    for (i=1;i<argc;i++)
    if (argv[i][0]=='-' && argv[i][1]=='s') MDstring(argv[i]+2);
+
      if (argv[i][0]=='-' && argv[i][1]=='s') MDstring(argv[i]+2);
    else if (strcmp(argv[i],"-t")==0)      MDtimetrial();
+
      else if (strcmp(argv[i],"-t")==0)      MDtimetrial();
    else if (strcmp(argv[i],"-x")==0)      MDtestsuite();
+
      else if (strcmp(argv[i],"-x")==0)      MDtestsuite();
    else                                    MDfile(argv[i]);
+
      else                                    MDfile(argv[i]);
 
  }
 
  }
  
Line 880: Line 940:
 
  d79e1c308aa5bbcdeea8ed63df412da9 "abcdefghijklmnopqrstuvwxyz"
 
  d79e1c308aa5bbcdeea8ed63df412da9 "abcdefghijklmnopqrstuvwxyz"
 
  043f8582f241db351ce627e153e7f0e4
 
  043f8582f241db351ce627e153e7f0e4
  "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
+
      "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
 
  a448017aaf21d8525fc10ae87aa6729d abcfile
 
  a448017aaf21d8525fc10ae87aa6729d abcfile
 
  >
 
  >
Line 892: Line 952:
  
  
 +
Rivest                                                       
 +
 +
RFC 1186              MD4 Message Digest Algorithm          October 1990
  
  
Line 914: Line 977:
 
  ------------------------ end of sample session --------------------
 
  ------------------------ end of sample session --------------------
  
  Note:  A version of this document including the C source code is
+
      Note:  A version of this document including the C source code is
  available for FTP from THEORY.LSC.MIT.EDU in the file "md4.doc".
+
      available for FTP from THEORY.LSC.MIT.EDU in the file "md4.doc".
  
 
Security Considerations
 
Security Considerations
  
The level of security discussed in this memo by MD4 is considered to
+
  The level of security discussed in this memo by MD4 is considered to
be sufficient for implementing very high security hybrid digital
+
  be sufficient for implementing very high security hybrid digital
signature schemes based on MD4 and the RSA public-key cryptosystem.
+
  signature schemes based on MD4 and the RSA public-key cryptosystem.
  
 
Author's Address
 
Author's Address
  
Ronald L. Rivest
+
  Ronald L. Rivest
Massachusetts Institute of Technology
+
  Massachusetts Institute of Technology
Laboratory for Computer Science
+
  Laboratory for Computer Science
NE43-324
+
  NE43-324
545 Technology Square
+
  545 Technology Square
Cambridge, MA 02139-1986
+
  Cambridge, MA 02139-1986
 +
 
 +
  Phone: (617) 253-5880
 +
 
 +
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
Phone: (617) 253-5880
 
  
+
Rivest

Revision as of 23:44, 22 September 2020




Network Working Group R. Rivest Request for Comments: 1186 MIT Laboratory for Computer Science

                                                          October 1990


                   The MD4 Message Digest Algorithm

Status of this Memo

  This RFC is the specification of the MD4 Digest Algorithm.  If you
  are going to implement MD4, it is suggested you do it this way.  This
  memo is for informational use and does not constitute a standard.
  Distribution of this memo is unlimited.

Table of Contents

  1.  Abstract ....................................................    1
  2.  Terminology and Notation ....................................    2
  3.  MD4 Algorithm Description ...................................    2
  4.  Extensions ..................................................    6
  5.  Summary .....................................................    7
  6.  Acknowledgements ............................................    7
  APPENDIX - Reference Implementation .............................    7
  Security Considerations..........................................   18
  Author's Address.................................................   18

1. Abstract

  This note describes the MD4 message digest algorithm.  The algorithm
  takes as input an input message of arbitrary length and produces as
  output a 128-bit "fingerprint" or "message digest" of the input.  It
  is conjectured that it is computationally infeasible to produce two
  messages having the same message digest, or to produce any message
  having a given prespecified target message digest.  The MD4 algorithm
  is thus ideal for digital signature applications, where a large file
  must be "compressed" in a secure manner before being signed with the
  RSA public-key cryptosystem.
  The MD4 algorithm is designed to be quite fast on 32-bit machines.
  On a SUN Sparc station, MD4 runs at 1,450,000 bytes/second.  On a DEC
  MicroVax II, MD4 runs at approximately 70,000 bytes/second.  On a
  20MHz 80286, MD4 runs at approximately 32,000 bytes/second.  In
  addition, the MD4 algorithm does not require any large substitution
  tables; the algorithm can be coded quite compactly.
  The MD4 algorithm is being placed in the public domain for review and
  possible adoption as a standard.



Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


  (Note: The document supersedes an earlier draft.  The algorithm
  described here is a slight modification of the one described in the
  draft.)

2. Terminology and Notation

  In this note a "word" is a 32-bit quantity and a byte is an 8-bit
  quantity.  A sequence of bits can be interpreted in a natural manner
  as a sequence of bytes, where each consecutive group of 8 bits is
  interpreted as a byte with the high-order (most significant) bit of
  each byte listed first.  Similarly, a sequence of bytes can be
  interpreted as a sequence of 32-bit words, where each consecutive
  group of 4 bytes is interpreted as a word with the low-order (least
  significant) byte given first.
  Let x_i denote "x sub i".  If the subscript is an expression, we
  surround it in braces, as in x_{i+1}.  Similarly, we use ^ for
  superscripts (exponentiation), so that x^i denotes x to the i-th
  power.
  Let the symbol "+" denote addition of words (i.e., modulo- 2^32
  addition). Let X <<< s denote the 32-bit value obtained by circularly
  shifting (rotating) X left by s bit positions.  Let not(X) denote the
  bit-wise complement of X, and let X v Y denote the bit-wise OR of X
  and Y.  Let X xor Y denote the bit-wise XOR of X and Y, and let XY
  denote the bit-wise AND of X and Y.

3. MD4 Algorithm Description

  We begin by supposing that we have a b-bit message as input, and that
  we wish to find its message digest.  Here b is an arbitrary
  nonnegative integer; b may be zero, it need not be a multiple of 8,
  and it may be arbitrarily large.  We imagine the bits of the message
  written down as follows:
               m_0 m_1 ... m_{b-1} .
  The following five steps are performed to compute the message digest
  of the message.
     Step 1. Append padding bits
        The message is "padded" (extended) so that its length (in bits)
        is congruent to 448, modulo 512.  That is, the message is
        extended so that it is just 64 bits shy of being a multiple of
        512 bits long.  Padding is always performed, even if the length
        of the message is already congruent to 448, modulo 512 (in
        which case 512 bits of padding are added).


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


        Padding is performed as follows: a single "1" bit is appended
        to the message, and then enough zero bits are appended so that
        the length in bits of the padded message becomes congruent to
        448, modulo 512.
     Step 2. Append length
        A 64-bit representation of b (the length of the message before
        the padding bits were added) is appended to the result of the
        previous step.  In the unlikely event that b is greater than
        2^64, then only the low-order 64 bits of b are used.  (These
        bits are appended as two 32-bit words and appended low-order
        word first in accordance with the previous conventions.)
        At this point the resulting message (after padding with bits
        and with b) has a length that is an exact multiple of 512 bits.
        Equivalently, this message has a length that is an exact
        multiple of 16 (32-bit) words.  Let M[0 ... N-1] denote the
        words of the resulting message, where N is a multiple of 16.
     Step 3. Initialize MD buffer
        A 4-word buffer (A,B,C,D) is used to compute the message
        digest.  Here each of A,B,C,D are 32-bit registers.  These
        registers are initialized to the following values in
        hexadecimal, low-order bytes first):
           word A:    01 23 45 67
           word B:    89 ab cd ef
           word C:    fe dc ba 98
           word D:    76 54 32 10
     Step 4. Process message in 16-word blocks
        We first define three auxiliary functions that each take
        as input three 32-bit words and produce as output one
        32-bit word.
           f(X,Y,Z)  =  XY v not(X)Z
           g(X,Y,Z)  =  XY v XZ v YZ
           h(X,Y,Z)  =  X xor Y xor Z
        In each bit position f acts as a conditional: if x then y else
        z.  (The function f could have been defined using + instead of
        v since XY and not(X)Z will never have 1's in the same bit
        position.)  In each bit position g acts as a majority function:
        if at least two of x, y, z are on, then g has a one in that bit
        position, else g has a zero. It is interesting to note that if


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


        the bits of X, Y, and Z are independent and unbiased, the each
        bit of f(X,Y,Z) will be independent and unbiased, and similarly
        each bit of g(X,Y,Z) will be independent and unbiased.  The
        function h is the bit-wise "xor" or "parity" function; it has
        properties similar to those of f and g.
        Do the following:
        For i = 0 to N/16-1 do  /* process each 16-word block */
                For j = 0 to 15 do: /* copy block i into X */
                  Set X[j] to M[i*16+j].
                end /* of loop on j */
                Save A as AA, B as BB, C as CC, and D as DD.
                [Round 1]
                  Let [A B C D i s] denote the operation
                        A = (A + f(B,C,D) + X[i]) <<< s  .
                  Do the following 16 operations:
                        [A B C D 0 3]
                        [D A B C 1 7]
                        [C D A B 2 11]
                        [B C D A 3 19]
                        [A B C D 4 3]
                        [D A B C 5 7]
                        [C D A B 6 11]
                        [B C D A 7 19]
                        [A B C D 8 3]
                        [D A B C 9 7]
                        [C D A B 10 11]
                        [B C D A 11 19]
                        [A B C D 12 3]
                        [D A B C 13 7]
                        [C D A B 14 11]
                        [B C D A 15 19]
                [Round 2]
                  Let [A B C D i s] denote the operation
                        A = (A + g(B,C,D) + X[i] + 5A827999) <<< s .
                  (The value 5A..99 is a hexadecimal 32-bit
                  constant, written with the high-order digit
                  first. This constant represents the square
                  root of 2.  The octal value of this constant
                  is 013240474631.  See Knuth, The Art of
                  Programming, Volume 2 (Seminumerical
                  Algorithms), Second Edition (1981),
                  Addison-Wesley.  Table 2, page 660.)
                  Do the following 16 operations:
                        [A B C D 0  3]


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


                        [D A B C 4  5]
                        [C D A B 8  9]
                        [B C D A 12 13]
                        [A B C D 1  3]
                        [D A B C 5  5]
                        [C D A B 9  9]
                        [B C D A 13 13]
                        [A B C D 2  3]
                        [D A B C 6  5]
                        [C D A B 10 9]
                        [B C D A 14 13]
                        [A B C D 3  3]
                        [D A B C 7  5]
                        [C D A B 11 9]
                        [B C D A 15 13]
                [Round 3]
                  Let [A B C D i s] denote the operation
                        A = (A + h(B,C,D) + X[i] + 6ED9EBA1) <<< s .
                  (The value 6E..A1 is a hexadecimal 32-bit
                  constant, written with the high-order digit
                  first.  This constant represents the square
                  root of 3.  The octal value of this constant
                  is 015666365641.  See Knuth, The Art of
                  Programming, Volume 2 (Seminumerical
                  Algorithms), Second Edition (1981),
                  Addison-Wesley.  Table 2, page 660.)
                  Do the following 16 operations:
                        [A B C D 0  3]
                        [D A B C 8  9]
                        [C D A B 4  11]
                        [B C D A 12 15]
                        [A B C D 2  3]
                        [D A B C 10 9]
                        [C D A B 6  11]
                        [B C D A 14 15]
                        [A B C D 1  3]
                        [D A B C 9  9]
                        [C D A B 5  11]
                        [B C D A 13 15]
                        [A B C D 3  3]
                        [D A B C 11 9]
                        [C D A B 7  11]
                        [B C D A 15 15]
        Then perform the following additions:
                        A = A + AA
                        B = B + BB


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


                        C = C + CC
                        D = D + DD
        (That is, each of the four registers is incremented by
        the value it had before this block was started.)
        end /* of loop on i */
     Step 5. Output
        The message digest produced as output is A,B,C,D.  That is, we
        begin with the low-order byte of A, and end with the high-order
        byte of D.
        This completes the description of MD4.  A reference
        implementation in C is given in the Appendix.

4. Extensions

  If more than 128 bits of output are required, then the following
  procedure is recommended to obtain a 256-bit output.  (There is no
  provision made for obtaining more than 256 bits.)
  Two copies of MD4 are run in parallel over the input.  The first copy
  is standard as described above.  The second copy is modified as
  follows.
  The initial state of the second copy is:
                   word A:    00 11 22 33
                   word B:    44 55 66 77
                   word C:    88 99 aa bb
                   word D:    cc dd ee ff
  The magic constants in rounds 2 and 3 for the second copy of MD4 are
  changed from sqrt(2) and sqrt(3) to cuberoot(2) and cuberoot(3):
                                   Octal           Hex
           Round 2 constant        012050505746    50a28be6
           Round 3 constant        013423350444    5c4dd124
  Finally, after every 16-word block is processed (including the last
  block), the values of the A registers in the two copies are
  exchanged.
  The final message digest is obtaining by appending the result of the
  second copy of MD4 to the end of the result of the first copy of MD4.




Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


5. Summary

  The MD4 message digest algorithm is simple to implement, and provides
  a "fingerprint" or message digest of a message of arbitrary length.
  It is conjectured that the difficulty of coming up with two messages
  having the same message digest is on the order of 2^64 operations,
  and that the difficulty of coming up with any message having a given
  message digest is on the order of 2^128 operations.  The MD4
  algorithm has been carefully scrutinized for weaknesses.  It is,
  however, a relatively new algorithm and further security analysis is
  of course justified, as is the case with any new proposal of this
  sort.  The level of security provided by MD4 should be sufficient for
  implementing very high security hybrid digital signature schemes
  based on MD4 and the RSA public-key cryptosystem.

6. Acknowledgements

  I'd like to thank Don Coppersmith, Burt Kaliski, Ralph Merkle, and
  Noam Nisan for numerous helpful comments and suggestions.

APPENDIX - Reference Implementation

This appendix contains the following files:

        md4.h        -- header file for using MD4 implementation
        md4.c        -- the source code for MD4 routines
        md4driver.c  -- a sample "user" routine
        session      -- sample results of running md4driver
/*
** ********************************************************************
** md4.h -- Header file for implementation of                        **
** MD4 Message Digest Algorithm                                      **
** Updated: 2/13/90 by Ronald L. Rivest                              **
** (C) 1990 RSA Data Security, Inc.                                  **
** ********************************************************************
*/
/* MDstruct is the data structure for a message digest computation.
*/
typedef struct {
  unsigned int buffer[4]; /* Holds 4-word result of MD computation */
  unsigned char count[8]; /* Number of bits processed so far */
  unsigned int done;      /* Nonzero means MD computation finished */
} MDstruct, *MDptr;
/* MDbegin(MD)


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


** Input: MD -- an MDptr
** Initialize the MDstruct prepatory to doing a message digest
** computation.
*/
extern void MDbegin();
/* MDupdate(MD,X,count)
** Input: MD -- an MDptr
**        X -- a pointer to an array of unsigned characters.
**        count -- the number of bits of X to use (an unsigned int).
** Updates MD using the first "count" bits of X.
** The array pointed to by X is not modified.
** If count is not a multiple of 8, MDupdate uses high bits of
** last byte.
** This is the basic input routine for a user.
** The routine terminates the MD computation when count < 512, so
** every MD computation should end with one call to MDupdate with a
** count less than 512.  Zero is OK for a count.
*/
extern void MDupdate();
/* MDprint(MD)
** Input: MD -- an MDptr
** Prints message digest buffer MD as 32 hexadecimal digits.
** Order is from low-order byte of buffer[0] to high-order byte
** of buffer[3].
** Each byte is printed with high-order hexadecimal digit first.
*/
extern void MDprint();
/*
** End of md4.h
****************************(cut)***********************************/
/*
** ********************************************************************
** md4.c -- Implementation of MD4 Message Digest Algorithm           **
** Updated: 2/16/90 by Ronald L. Rivest                              **
** (C) 1990 RSA Data Security, Inc.                                  **
** ********************************************************************
*/
/*
** To use MD4:
**   -- Include md4.h in your program
**   -- Declare an MDstruct MD to hold the state of the digest
**          computation.
**   -- Initialize MD using MDbegin(&MD)


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


**   -- For each full block (64 bytes) X you wish to process, call
**          MDupdate(&MD,X,512)
**      (512 is the number of bits in a full block.)
**   -- For the last block (less than 64 bytes) you wish to process,
**          MDupdate(&MD,X,n)
**      where n is the number of bits in the partial block. A partial
**      block terminates the computation, so every MD computation
**      should terminate by processing a partial block, even if it
**      has n = 0.
**   -- The message digest is available in MD.buffer[0] ...
**      MD.buffer[3].  (Least-significant byte of each word
**      should be output first.)
**   -- You can print out the digest using MDprint(&MD)
*/
/* Implementation notes:
** This implementation assumes that ints are 32-bit quantities.
** If the machine stores the least-significant byte of an int in the
** least-addressed byte (e.g., VAX and 8086), then LOWBYTEFIRST
** should be set to TRUE.  Otherwise (e.g., SUNS), LOWBYTEFIRST
** should be set to FALSE.  Note that on machines with LOWBYTEFIRST
** FALSE the routine MDupdate modifies has a side-effect on its input
** array (the order of bytes in each word are reversed).  If this is
** undesired a call to MDreverse(X) can reverse the bytes of X back
** into order after each call to MDupdate.
*/
#define TRUE  1
#define FALSE 0
#define LOWBYTEFIRST FALSE
/* Compile-time includes
*/
#include <stdio.h>
#include "md4.h"
/* Compile-time declarations of MD4 "magic constants".
*/
#define I0  0x67452301       /* Initial values for MD buffer */
#define I1  0xefcdab89
#define I2  0x98badcfe
#define I3  0x10325476
#define C2  013240474631     /* round 2 constant = sqrt(2) in octal */
#define C3  015666365641     /* round 3 constant = sqrt(3) in octal */
/* C2 and C3 are from Knuth, The Art of Programming, Volume 2
** (Seminumerical Algorithms), Second Edition (1981), Addison-Wesley.
** Table 2, page 660.
*/


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


#define fs1  3               /* round 1 shift amounts */
#define fs2  7
#define fs3 11
#define fs4 19
#define gs1  3               /* round 2 shift amounts */
#define gs2  5
#define gs3  9
#define gs4 13
#define hs1  3               /* round 3 shift amounts */
#define hs2  9
#define hs3 11
#define hs4 15
/* Compile-time macro declarations for MD4.
** Note: The "rot" operator uses the variable "tmp".
** It assumes tmp is declared as unsigned int, so that the >>
** operator will shift in zeros rather than extending the sign bit.
*/
#define f(X,Y,Z)             ((X&Y) | ((~X)&Z))
#define g(X,Y,Z)             ((X&Y) | (X&Z) | (Y&Z))
#define h(X,Y,Z)             (X^Y^Z)
#define rot(X,S)             (tmp=X,(tmp<<S) | (tmp>>(32-S)))
#define ff(A,B,C,D,i,s)      A = rot((A + f(B,C,D) + X[i]),s)
#define gg(A,B,C,D,i,s)      A = rot((A + g(B,C,D) + X[i] + C2),s)
#define hh(A,B,C,D,i,s)      A = rot((A + h(B,C,D) + X[i] + C3),s)
/* MDprint(MDp)
** Print message digest buffer MDp as 32 hexadecimal digits.
** Order is from low-order byte of buffer[0] to high-order byte of
** buffer[3].
** Each byte is printed with high-order hexadecimal digit first.
** This is a user-callable routine.
*/
void
MDprint(MDp)
MDptr MDp;
{ int i,j;
  for (i=0;i<4;i++)
    for (j=0;j<32;j=j+8)
      printf("%02x",(MDp->buffer[i]>>j) & 0xFF);
}
/* MDbegin(MDp)
** Initialize message digest buffer MDp.
** This is a user-callable routine.
*/
void
MDbegin(MDp)


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


MDptr MDp;
{ int i;
  MDp->buffer[0] = I0;
  MDp->buffer[1] = I1;
  MDp->buffer[2] = I2;
  MDp->buffer[3] = I3;
  for (i=0;i<8;i++) MDp->count[i] = 0;
  MDp->done = 0;
}
/* MDreverse(X)
** Reverse the byte-ordering of every int in X.
** Assumes X is an array of 16 ints.
** The macro revx reverses the byte-ordering of the next word of X.
*/
#define revx { t = (*X << 16) | (*X >> 16); \
     *X++ = ((t & 0xFF00FF00) >> 8) | ((t & 0x00FF00FF) << 8); }
MDreverse(X)
unsigned int *X;
{ register unsigned int t;
  revx; revx; revx; revx; revx; revx; revx; revx;
  revx; revx; revx; revx; revx; revx; revx; revx;
}
/* MDblock(MDp,X)
** Update message digest buffer MDp->buffer using 16-word data block X.
** Assumes all 16 words of X are full of data.
** Does not update MDp->count.
** This routine is not user-callable.
*/
static void
MDblock(MDp,X)
MDptr MDp;
unsigned int *X;
{
  register unsigned int tmp, A, B, C, D;
#if LOWBYTEFIRST == FALSE
  MDreverse(X);
#endif
  A = MDp->buffer[0];
  B = MDp->buffer[1];
  C = MDp->buffer[2];
  D = MDp->buffer[3];
  /* Update the message digest buffer */
  ff(A , B , C , D ,  0 , fs1); /* Round 1 */
  ff(D , A , B , C ,  1 , fs2);
  ff(C , D , A , B ,  2 , fs3);
  ff(B , C , D , A ,  3 , fs4);


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


  ff(A , B , C , D ,  4 , fs1);
  ff(D , A , B , C ,  5 , fs2);
  ff(C , D , A , B ,  6 , fs3);
  ff(B , C , D , A ,  7 , fs4);
  ff(A , B , C , D ,  8 , fs1);
  ff(D , A , B , C ,  9 , fs2);
  ff(C , D , A , B , 10 , fs3);
  ff(B , C , D , A , 11 , fs4);
  ff(A , B , C , D , 12 , fs1);
  ff(D , A , B , C , 13 , fs2);
  ff(C , D , A , B , 14 , fs3);
  ff(B , C , D , A , 15 , fs4);
  gg(A , B , C , D ,  0 , gs1); /* Round 2 */
  gg(D , A , B , C ,  4 , gs2);
  gg(C , D , A , B ,  8 , gs3);
  gg(B , C , D , A , 12 , gs4);
  gg(A , B , C , D ,  1 , gs1);
  gg(D , A , B , C ,  5 , gs2);
  gg(C , D , A , B ,  9 , gs3);
  gg(B , C , D , A , 13 , gs4);
  gg(A , B , C , D ,  2 , gs1);
  gg(D , A , B , C ,  6 , gs2);
  gg(C , D , A , B , 10 , gs3);
  gg(B , C , D , A , 14 , gs4);
  gg(A , B , C , D ,  3 , gs1);
  gg(D , A , B , C ,  7 , gs2);
  gg(C , D , A , B , 11 , gs3);
  gg(B , C , D , A , 15 , gs4);
  hh(A , B , C , D ,  0 , hs1); /* Round 3 */
  hh(D , A , B , C ,  8 , hs2);
  hh(C , D , A , B ,  4 , hs3);
  hh(B , C , D , A , 12 , hs4);
  hh(A , B , C , D ,  2 , hs1);
  hh(D , A , B , C , 10 , hs2);
  hh(C , D , A , B ,  6 , hs3);
  hh(B , C , D , A , 14 , hs4);
  hh(A , B , C , D ,  1 , hs1);
  hh(D , A , B , C ,  9 , hs2);
  hh(C , D , A , B ,  5 , hs3);
  hh(B , C , D , A , 13 , hs4);
  hh(A , B , C , D ,  3 , hs1);
  hh(D , A , B , C , 11 , hs2);
  hh(C , D , A , B ,  7 , hs3);
  hh(B , C , D , A , 15 , hs4);
  MDp->buffer[0] += A;
  MDp->buffer[1] += B;
  MDp->buffer[2] += C;
  MDp->buffer[3] += D;


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


}
/* MDupdate(MDp,X,count)
** Input: MDp -- an MDptr
**        X -- a pointer to an array of unsigned characters.
**        count -- the number of bits of X to use.
**          (if not a multiple of 8, uses high bits of last byte.)
** Update MDp using the number of bits of X given by count.
** This is the basic input routine for an MD4 user.
** The routine completes the MD computation when count < 512, so
** every MD computation should end with one call to MDupdate with a
** count less than 512.  A call with count 0 will be ignored if the
** MD has already been terminated (done != 0), so an extra call with
** count 0 can be given as a "courtesy close" to force termination
** if desired.
*/
void
MDupdate(MDp,X,count)
MDptr MDp;
unsigned char *X;
unsigned int count;
{ unsigned int i, tmp, bit, byte, mask;
  unsigned char XX[64];
  unsigned char *p;
  /* return with no error if this is a courtesy close with count
  ** zero and MDp->done is true.
  */
  if (count == 0 && MDp->done) return;
  /* check to see if MD is already done and report error */
  if (MDp->done)
         { printf("\nError: MDupdate MD already done."); return; }
  /* Add count to MDp->count */
  tmp = count;
  p = MDp->count;
  while (tmp)
    { tmp += *p;
      *p++ = tmp;
      tmp = tmp >> 8;
    }
  /* Process data */
  if (count == 512)
    { /* Full block of data to handle */
      MDblock(MDp,(unsigned int *)X);
    }
  else if (count > 512) /* Check for count too large */
    { printf("\nError: MDupdate called with illegal count value %d."
             ,count);
      return;


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


    }
  else /* partial block -- must be last block so finish up */
    { /* Find out how many bytes and residual bits there are */
      byte = count >> 3;
      bit =  count & 7;
      /* Copy X into XX since we need to modify it */
      for (i=0;i<=byte;i++)   XX[i] = X[i];
      for (i=byte+1;i<64;i++) XX[i] = 0;
      /* Add padding '1' bit and low-order zeros in last byte */
      mask = 1 << (7 - bit);
      XX[byte] = (XX[byte] | mask) & ~( mask - 1);
      /* If room for bit count, finish up with this block */
      if (byte <= 55)
        { for (i=0;i<8;i++) XX[56+i] = MDp->count[i];
          MDblock(MDp,(unsigned int *)XX);
        }
      else /* need to do two blocks to finish up */
        { MDblock(MDp,(unsigned int *)XX);
          for (i=0;i<56;i++) XX[i] = 0;
          for (i=0;i<8;i++)  XX[56+i] = MDp->count[i];
          MDblock(MDp,(unsigned int *)XX);
        }
      /* Set flag saying we're done with MD computation */
      MDp->done = 1;
    }
}
/*
** End of md4.c
****************************(cut)***********************************/
/*
** ********************************************************************
** md4driver.c -- sample routines to test                            **
** MD4 message digest algorithm.                                     **
** Updated: 2/16/90 by Ronald L. Rivest                              **
** (C) 1990 RSA Data Security, Inc.                                  **
** ********************************************************************
*/
#include <stdio.h>
#include "md4.h"
/* MDtimetrial()
** A time trial routine, to measure the speed of MD4.
** Measures speed for 1M blocks = 64M bytes.
*/
MDtimetrial()


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


{ unsigned int X[16];
  MDstruct MD;
  int i;
  double t;
  for (i=0;i<16;i++) X[i] = 0x01234567 + i;
  printf
  ("MD4 time trial. Processing 1 million 64-character blocks...\n");
  clock();
  MDbegin(&MD);
  for (i=0;i<1000000;i++) MDupdate(&MD,X,512);
  MDupdate(&MD,X,0);
  t = (double) clock(); /* in microseconds */
  MDprint(&MD); printf(" is digest of 64M byte test input.\n");
  printf("Seconds to process test input:   %g\n,t/1e6);
  printf("Characters processed per second: %ld.\n,(int)(64e12/t));
}
/* MDstring(s)
** Computes the message digest for string s.
** Prints out message digest, a space, the string (in quotes) and a
** carriage return.
*/
MDstring(s)
unsigned char *s;
{ unsigned int i, len = strlen(s);
  MDstruct MD;
  MDbegin(&MD);
  for (i=0;i+64<=len;i=i+64) MDupdate(&MD,s+i,512);
  MDupdate(&MD,s+i,(len-i)*8);
  MDprint(&MD);
  printf(" \"%s\"\n",s);
}
/* MDfile(filename)
** Computes the message digest for a specified file.
** Prints out message digest, a space, the file name, and a
** carriage return.
*/
MDfile(filename)
char *filename;
{ FILE *f = fopen(filename,"rb");
  unsigned char X[64];
  MDstruct MD;
  int b;
  if (f == NULL)
     { printf("%s can't be opened.\n",filename); return; }
  MDbegin(&MD);
  while ((b=fread(X,1,64,f))!=0) MDupdate(&MD,X,b*8);


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


  MDupdate(&MD,X,0);
  MDprint(&MD);
  printf(" %s\n",filename);
  fclose(f);
}
/* MDfilter()
** Writes the message digest of the data from stdin onto stdout,
** followed by a carriage return.
*/
MDfilter()
{ unsigned char X[64];
  MDstruct MD;
  int b;
  MDbegin(&MD);
  while ((b=fread(X,1,64,stdin))!=0) MDupdate(&MD,X,b*8);
  MDupdate(&MD,X,0);
  MDprint(&MD);
  printf("\n");
}
/* MDtestsuite()
** Run a standard suite of test data.
*/
MDtestsuite()
{
  printf("MD4 test suite results:\n");
  MDstring("");
  MDstring("a");
  MDstring("abc");
  MDstring("message digest");
  MDstring("abcdefghijklmnopqrstuvwxyz");
  MDstring
  ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
  MDfile("foo"); /* Contents of file foo are "abc" */
}
main(argc,argv)
int argc;
char *argv[];
{ int i;
  /* For each command line argument in turn:
  ** filename          -- prints message digest and name of file
  ** -sstring          -- prints message digest and contents of string
  ** -t                -- prints time trial statistics for 64M bytes
  ** -x                -- execute a standard suite of test data
  ** (no args)         -- writes messages digest of stdin onto stdout
  */


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


  if (argc==1) MDfilter();
  else
    for (i=1;i<argc;i++)
      if (argv[i][0]=='-' && argv[i][1]=='s') MDstring(argv[i]+2);
      else if (strcmp(argv[i],"-t")==0)       MDtimetrial();
      else if (strcmp(argv[i],"-x")==0)       MDtestsuite();
      else                                    MDfile(argv[i]);
}
/*
** end of md4driver.c
****************************(cut)***********************************/


--------------------------------------------------------------------
--- Sample session.  Compiling and using MD4 on SUN Sparcstation ---
--------------------------------------------------------------------
>ls
total 66
-rw-rw-r--  1 rivest          3 Feb 14 17:40 abcfile
-rwxrwxr-x  1 rivest      24576 Feb 17 12:28 md4
-rw-rw-r--  1 rivest       9347 Feb 17 00:37 md4.c
-rw-rw-r--  1 rivest      25150 Feb 17 12:25 md4.doc
-rw-rw-r--  1 rivest       1844 Feb 16 21:21 md4.h
-rw-rw-r--  1 rivest       3497 Feb 17 12:27 md4driver.c
>
>cc -o md4 -O4 md4.c md4driver.c
md4.c:
md4driver.c:
Linking:
>
>md4 -x
MD4 test suite results:
31d6cfe0d16ae931b73c59d7e0c089c0 ""
bde52cb31de33e46245e05fbdbd6fb24 "a"
a448017aaf21d8525fc10ae87aa6729d "abc"
d9130a8164549fe818874806e1c7014b "message digest"
d79e1c308aa5bbcdeea8ed63df412da9 "abcdefghijklmnopqrstuvwxyz"
043f8582f241db351ce627e153e7f0e4
     "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
a448017aaf21d8525fc10ae87aa6729d abcfile
>
>md4 -sabc -shi
a448017aaf21d8525fc10ae87aa6729d "abc"
cfaee2512bd25eb033236f0cd054e308 "hi"
>
>md4 *
a448017aaf21d8525fc10ae87aa6729d abcfile


Rivest

RFC 1186 MD4 Message Digest Algorithm October 1990


d316f994da0e951cf9502928a1f73300 md4
379adb39eada0dfdbbdfdcd0d9def8c4 md4.c
9a3f73327c65954198b1f45a3aa12665 md4.doc
37fe165ac177b461ff78b86d10e4ff33 md4.h
7dcba2e2dc4d8f1408d08beb17dabb2a md4.o
08790161bfddc6f5788b4353875cb1c3 md4driver.c
1f84a7f690b0545d2d0480d5d3c26eea md4driver.o
>
>cat abcfile | md4
a448017aaf21d8525fc10ae87aa6729d
>
>md4 -t
MD4 time trial. Processing 1 million 64-character blocks...
6325bf77e5891c7c0d8104b64cc6e9ef is digest of 64M byte test input.
Seconds to process test input:   44.0982
Characters processed per second: 1451305.
>
>
------------------------ end of sample session --------------------
     Note:  A version of this document including the C source code is
     available for FTP from THEORY.LSC.MIT.EDU in the file "md4.doc".

Security Considerations

  The level of security discussed in this memo by MD4 is considered to
  be sufficient for implementing very high security hybrid digital
  signature schemes based on MD4 and the RSA public-key cryptosystem.

Author's Address

  Ronald L. Rivest
  Massachusetts Institute of Technology
  Laboratory for Computer Science
  NE43-324
  545 Technology Square
  Cambridge, MA 02139-1986
  Phone: (617) 253-5880
  EMail: [email protected]






Rivest